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1. Introduction
The Lux AI challenge is an AI programming competi-

tion in which two teams of robots face off in a resource-
gathering simulation. Submissions range from heuristic-
based algorithms to machine learning approaches, compet-
ing on a continually updating, global leaderboard. In this
project, we experiment with a deep learning approach for
imitating the behavior of strong-performing agents in Lux
AI season 2, which ran on Kaggle from January to April
2023. The project repository can be found at this link.

1.1. Problem description

The competition environment is a two-dimensional grid,
where each agent controls a teams of factories and robots
(Figure 1). Robots collect resources such as ice and ore
from set locations on the map, return them to the factories
to refine them into water and metal, and use these resources
to build and sustain additional robots. The game has three
phases: a bidding phase, in which agents bid starting re-
sources to determine the factory placement order; a place-
ment phase, where agents take turns selecting initial factory
locations; and finally, the main phase of the game, where
robots are built and controlled. The final objective is to
maximize the growth of a resource called lichen using water
collected throughout the main phase.

1.2. Motivation

A number of competitors utilize heuristic-based agents.
These approaches rely on significant understanding of the
environment dynamics, as well as human intuition. For
example, agents might rely on path-finding algorithms,
or heuristics to delegate robot responsibilities. Such ap-
proaches can scale poorly in terms of computational cost
as the number of agents increases. In addition, modifying
such an approach requires manually changing the code of
the underlying program.

In this project, we examine an deep learning approach
based on imitating the behavior of other agents. This ap-
proach can not only leverage data from a wide variety of
other teams’ strategies, but also, since robot actions are se-
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Figure 1. An example game board state. The resources are ice,
ore, and rubble is shaded depending on whether it is light or heavy.
Factories are the 3×3 squares with lichen growing from them, and
robots are the 1×1 squares and circles (same for the other player).

lect via a single pass of neural network inference, our ap-
proach has constant computation cost with respect to the
number of agents. Additionally, by incorporating exist-
ing architectures designed for semantic segmentation of im-
ages, we can leverage a large body of knowledge relevant to
pixel-level prediction on two-dimensional grid inputs.

We leverage the vast amount of replay data available
through the public Meta Kaggle dataset [17]. By download-
ing replays through Kaggle’s API, we can extract in-game
trajectories of states and actions, as well as the agent rat-
ings, numbers representing an approximate skill level used
for matchmaking.

2. Approach
A single match between two teams is separated into

three phases: the bidding phase, the setup phase, and the
main phase. In the bidding phase, each team bids a certain
amount of resources in order to decide the turn order for the
setup phase. For the sake of simplicity, we choose to ignore
the bidding phase, and simply bid 0 resources every game.
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In subsection 2.1, we discuss a modeling methodology for
the setup phase based on Gaussian Process regression. In
Appendix C, we discuss a black-box hyperparameter tun-
ing strategy that needs only games between agents. For the
main phase of the game, we utilize an approach inspired by
image segmentation, which we describe in subsection 2.2.

2.1. Kernel methods for setup phase

During the setup phase, players take turns selecting a 3×
3 area which fits within the limits of the board, that does not
directly overlap ice or ore, and is at least 6 tiles from the
center of any other factory. At a high level, our goal during
the setup phase is to pick the “best” factory locations that
are close to desired resources, away from the opponent’s
factories, and so on.

Compared to the main phase of the game, which involves
trajectories of up to 1000 states and actions, each replay
only provides around 3-5 data points relevant to the setup
phase. Out of 200,000 total states, we extracted only 203
starting states. Thus, it is prohibitively expensive to collect
a large amount of data for the setup phase and so we consid-
ered neural networks infeasible at this level of data scarcity.

Instead, we decided to use a kernel method akin to Gaus-
sian processes (GPs), a nonparametric model which directly
induces a probability distribution over functional spaces
through its mean and kernel function, in order to predict the
score of each cell and place a factory at the highest scoring
cells. Prior information and inductive biases like smooth-
ness can be injected directly into the kernel information. As
a result, GPs have seen widespread usage in machine learn-
ing [16] and can be also be seen as the limit of infinite-depth
Bayesian neural networks [3].

Specifically, we say a function f(x) is a Gaussian pro-
cess with mean function µ(x) and kernel function K(x,x′)
if for any set of points X = {xi}Ni=1, f(X) ∼ N (µ,Θ),
where µi = µ(xi) and Θi,j = K(xi,xj). Given features
XTr = [x1, . . . ,xN ]⊤ with targets yTr = [y1, . . . , yN ]⊤, we
wish to predict the values at new points XPr for which yPr
is unknown. To make predictions at XPr, we condition the
desired prediction yPr on the known data yTr. For Gaussian
processes, the closed-form posterior distribution is

E[yPr | yTr] = µPr +ΘPr,TrΘ
−1
Tr,Tr(yTr − µTr), (1)

Cov[yPr | yTr] = ΘPr,Pr −ΘPr,TrΘ
−1
Tr,TrΘTr,Pr. (2)

However, computing the conditional mean (1) requires
inversion of the covariance matrix of the training data,
which scales as O(n3) for n training points. In principle
we could accelerate this with state-of-the-art numerics [20],
but for simplicity we propose the following approximation:
first, without loss of generality we can assume the mean is 0
since a nonzero mean will shift every cell equally, preserv-
ing the relative rankings. Second we propose approximating

Figure 2. True factory positions (left) after smoothing (right).

Θ−1
Tr,Tr ≈ Id which is equivalent to assuming training cells

are statistically independent. We can intuitively interpret

E[yPr | yTr] ≈ ΘPr,TryTr (3)

as a weighted linear combination of training labels, with
weights given by the similarity of each training point to
the target point. We use a separate Matérn kernel for each
salient feature of the board (ice, ore, and rubble) for

yfinal
Pr = cicey

ice
Pr + corey

ore
Pr + crubbley

rubble
Pr . (4)

Other than the coefficient in (4), each Matérn kernel has
two hyperparameters, a length scale which controls to what
degree father points influences the prediction, and a smooth-
ness which controls the regularity of sampled functions. We
therefore have 12 hyperparameters to learn.

We implement both the estimator and the hyperparame-
ter tuning in the scikit-learn [14] framework. We use
random search with uniform priors over all coefficients:

• Coefficients: [−1, 1]

• Length scale: [0, 20]

• Smoothness: {1/2, 3/2, 5/2,∞}

Since we do not have trainable parameters, we do not
perform cross validation and simply take the highest scor-
ing set of parameters. We score parameters by their mean
squared error (MSE) from (4) to the one-hot encoded true
factory positions. We use Gaussian smoothing to regularize
the objective, encouraging the model to place factories at
similar locations to the ground truth (Figure 2).

[coefficients, length scales, smoothness] MSE
[0.061, 0.857, -0.001], [4.21, 1.91, 13.5], [0.5, 0.5, 1.5] 0.024
[-0.016, 0.460, -0.063], [9.15, 2.75, 0.218], [inf, inf, 0.5] 0.054
[0.648, 0.434, -0.170], [5.56, 2.33, 0.548], [2.5, 2.5, 0.5] 0.069
[0.660, 0.270, -0.319], [3.83, 11.3, 0.541], [0.5, 0.5, 0.5] 0.108

Table 1. Best hyperparameters out of 500 samples for 4 different
seeds. For each parameter group, the order is [ice, ore, rubble].



The best parameters out of 500 samples for 4 different
seeds are shown in Table 1. The model generally encour-
ages placement near ice and ore while discouraging prox-
imity to rubble. Through the length scale the model consid-
ers distant ice, nearby ore, but only extremely close rubble.
However, significant variation in the absolute magnitude of
parameters as well as in smoothness suggests the problem
is severely underspecified, probably due to data scarcity.

In addition, we believe that the model may be underscor-
ing valuable resources like ice and ore due to its inability to
encode nearby factories. In the course of an ordinary game,
the first player might place their factory near ice and ore,
thus blocking them from the second player. Thus factories
are artificially far from each other. In future work we may
want to collect data at a more fine-grain level or model exist-
ing factories as electric charges and add an energy penalty.

2.2. Data and model architecture

For the main phase of the game, we utilize a behavioral
cloning[15] approach. Specifically, our goal is to predict
the actions taken by each robot that a top-ranking submis-
sion would likely perform. As such, we use the Kaggle API
to download replays of games involving submissions from
the top 100 ranked competitors on the leaderboard. The re-
play data contains the actions taken by each robot across all
time steps in the game. We thought that this would lead to a
successful strategy since we would be imitating the already
successful, though unpublished, strategies based on their re-
plays. To achieve this, note that during the main phase of the
game, each robot on the board takes actions as determined
by the overall agent/player. As such, our model’s objective
can be formulated as to correctly predict the actions taken
by the robots for the replays in our dataset.

Our model needs to predict the appropriate action taken
by each robot on the board. Specifically, this involves pre-
dicting the type of action (e.g. a move to an adjacent po-
sition, a transfer of resources from one robot to another,
a pickup of resources from a factory, etc.), the type of re-
source for which the action is being performed, and the
quantity of the resource involved (for transfer/pickup ac-
tions). The treat the prediction of action and resource types
as classification tasks, whereas resource quantity is treated
as a regression problem.

As such, the structure of our problem is that we are
given a representation of the current board state, which in-
cludes the locations of the factories, resources, and robots.
Clearly, this leads to a 2D-grid structure spread across mul-
tiple channels. Likewise, the output is to predict the values
described above for certain positions in the board, also re-
sulting in a 2D-grid structure. This problem can naturally be
interpreted as a form of image segmentation, which is gen-
erally the idea of predicting from a discrete class of values
for each pixel in an image.

Thus, we design our model in a similar method to im-
age segmentation, except with the modification that we have
three output heads mentioned above, and not just a pixel-
wise single classification objective. Additionally, rather
than a 3-channel input like with images, our input contains
37 channels due needing to account for all items on the
board.

Therefore, we structure our model with an image seg-
mentation backbone architecture, such as U-Nets [18] and
LRASPP [8], followed by three fully-connected portions for
the output heads at each position in the board. For the back-
bone, we consider using a simple linear model as a base-
line, which is implemented via a single convolutional layer
with a kernel size of 1. We also consider U-Net, which
is an improvement over encoder-decoder fully connected
convolutional networks for segmentation due to the pres-
ence of skip connections and multiple up-sampling layers
rather than only 1. Lastly, we consider LRASPP, which is
a lightweight image segmentation model designed to be run
on mobile devices. We do so since we are not using the pre-
trained version of any models (as it does not make sense to
use models trained on actual images for a problem that is
not involving images) in this problem, and thus the larger
U-Net may not be able to learn efficiently on our dataset.

In total, all components related to the segmentation and
output heads are learnable. The only non-learnable parame-
ters of this model include our pre-processing to convert the
raw replays into PyTorch tensors for the model to take as
input and output (for training), as well as the logic for con-
verting the model’s output into decisions to make in-game,
which can be done by using the argmax for the classifica-
tion outputs and rounding to the nearest integer for the re-
gression output.

The main problem that we anticipated with approach was
feature scaling for real-valued inputs in the board, such
as the number of a given resource on a position. Since
these values could potentially get large and thus hinder
the model’s accuracy, we instead used the log of all real-
valued features, a trick which has been used in other set-
tings [6]. Additionally, we anticipated an issue with bal-
ancing our loss function to accurately account for all 3 out-
put heads, which we addressed by weighing the loss in sec-
tion 3. Lastly, there was a class imbalance as certain actions
were taken much more frequently than others in our replays.
We attempted to address this using the recall-based class
weighting approach suggested in [21], but found that this
approach did not have a significant impact on performance.

3. Training
For training our model on the main phase of the game,

we use the same loss function regardless of the underly-
ing segmentation architecture. Specifically, since our model
needs to predict the type of action, resource involved, and



Figure 3. The training loss, validation loss, and validation accuracy of our model for each of the three architectures.

Figure 4. Curves for training loss, validation loss, and validation accuracy of our approach with the U-Net architecture, comparing perfor-
mance with and without metadata.

quantity at each position, our loss function can be written as

L = Laction type + Lresource + αLquantity. (5)

Prediction of action type and resource are both classifica-
tion problems, so we perform pixel-wise cross-entropy loss
for both, taking the mean across the entire board and apply-
ing a 0/1 mask, so that the loss only includes positions at
which there is a robot. For predicting the quantity, we have
a regression problem, so we use pixel-wise mean squared
error, taking the sum across the entire board and applying a
0/1 mask again. α is a non-negative hyperparameter used to
weigh the MSE loss, in order to prevent it from dominating
the cross-entropy loss.

The hyperparameters of our model mainly include the
learning rate, MSE weight term, and the coefficient of
weight decay. We tune hyperparameters via a coarse grid
search up to 1 step per decade. We trained using the Adam
optimizer with a minibatch size of 16 for 10 epochs. We
ended up using a learning rate of a learning rate of 1e-3,
weight decay of 1e-6, and α = 1/100, which we found per-

formed relatively well on all architectures.
We used PyTorch [13] for our model implementation,

and obtained implementations of the baseline semantic seg-
mentation architectures from Torchvision [12]. We did
not use pretrained weights in any form, as our domain does
not deal with a visual image-based input in the traditional
sense.

3.1. Conditioning on Demonstrator Quality

We consider passing in various types of metadata avail-
able in the replay files, in addition to the board state it-
self. This includes information about the two players’ rat-
ings, as well as the difference in final score (the accumu-
lated lichen), which determines the game winner. We add
these scalars to the input by broadcasting over the entire
input plane and appending them as additional image chan-
nels. This approach was loosely inspired by the Return-
To-Go (RtG) input provided during the training of Decision
Transformers [4]. Essentially, by treating the problem as
a sequence modeling task and conditioning on the reward



received in the remainder of the episode, the decision trans-
former learns to model both effective and ineffective ac-
tions. By including data about player ratings and the future
match outcome into our training data, and conditioning on
high player ratings or winning match outcomes at test time,
we hope to attain similar benefits.

Remark We initially planned on using a reinforcement
learning approach for this problem rather than the presented
supervised learning model, and in Appendix C, we exper-
imented with a more rigorous dueling bandit approach to
hyperparameter tuning. However, we shifted away from re-
inforcement learning due to challenges with the LuxAI en-
vironment, and thus for this supervised learning problem,
simply evaluating hyperparameters on a validation set is a
more scalable approach with our magnitude of training data.

4. Experiments and Results

Our primary measure of success was to consider the ac-
curacy of our model on the validation dataset in predict-
ing the action type, resource, and quantity (see above) for
each robot on the board. We considered this metric under
the various semantic segmentation architectures mentioned
earlier. The training and accuracy curves can be seen in
Figure 3. It should be worth noting that we are not using
the pretrained version of these models since they are pre-
trained for images; although this task involves a pointwise
prediction on grid-like structures, they are not images. As
such, we consider all such architectures rather than relying
on whichever performs best on benchmark image datasets.
Based on the figure, the U-Net architecture has the strongest
performance, while the performance of LRASPP is some-
what similar or slightly worse than the linear model.

4.1. Ablation: metadata conditioning

We conduct an ablation study of the additional metadata
input channels described in subsection 3.1 by comparing
performance including the metadata and performance with-
out (where the initial channels are set to zero). To isolate the
impact of this change, we test with the only best-performing
U-Net architecture.

The training curves comparing the two approaches are
depicted in Figure 4. There does not seem to be a signifi-
cant difference in performance with and without the meta-
data. We discuss possible interpretations and alternative ap-
proaches in section 5.

5. Discussion

Of the 3 semantic segmentation architectures tested with
our model for the main phase, the U-Net performed the
best. The poor performance of the baseline linear model

is unsurprising, due to the limited model capacity. How-
ever, LRASPP surprisingly performed quite poorly, even
relative to the linear approach. One possible explanation is
that during inference, the LRASPP architecture predicts at
a lower resolution before bilinearly interpolating the output
to a higher resolution. Although this may be a reasonable
architectural decision for typical tasks involving semantic
segmentation of images (after all, adjacent pixels likely be-
long to the same object class), in this problem space it is
quite common for robots in adjacent tiles to take entirely
distinct actions, thus reducing LRASPP’s effectiveness.

In subsection 4.1 we observed that conditioning on sub-
mission ratings and match outcomes did not improve train-
ing or validation performance. This outcome is not entirely
unexpected, as we do not take the sequence modeling ap-
proach from [4], so similar modeling decisions may not lead
to strong improvements in the domain of single-step mod-
eling. In addition, our source of data was replays from the
top 100 agents, during a snapshot of the leaderboard rela-
tively early on in the competition. At that point, most of
the agents were likely deterministic, heuristic-based agents,
whose behavior did not change much regardless of how well
the team was doing at a particular phase of the game, and
was of course fixed regardless of the submission’s current
rating.

5.1. Analysis: post-competition comparison to
other approaches

By combining the kernel methods for the setup phase
with the segmentation approaches for the main phase of the
game, we technically have an agent capable of competing in
the Lux AI environment. However, despite the high overall
accuracy on the offline dataset, we ran into several difficul-
ties when deploying the model online. For example, the
agent would often fail to mine sufficient quantities of ice to
survive past turn 150.

After the competition ended on April 24th, we can com-
pare our approach with various solutions other teams de-
cided to publish. We noticed that the imitation-based solu-
tion posted here for example, was quite similar to our work.
Notable difference from our method include

• A simplification of the action space: they only pre-
dicted action classes, and used hardcoded parameters
for those actions (target resource and quantity).

• No demonstration heterogeneity: all of their replays
came from a single, reinforcement-learning based sub-
mission, while we sampled uniformly from the top 100
players.

• More sophisticated postprocessing: they masked out
invalid actions, as well as friendly inter-robot colli-
sions.

https://www.kaggle.com/competitions/lux-ai-season-2/discussion/404842


• Heuristic algorithm for the setup phase, based on hu-
man intuition.

Essentially, for the main phase of the game, their approach
puts strict limitations on the output space of the model, re-
ducing the difficulty of the problem. A lack of demonstra-
tion heterogeneity may lead to reduced strategic diversity,
but also meant that their targets would be more consistent
across their dataset.

6. Conclusion
In this project, we explored a deep imitation learning ap-

proach to the LuxAI Season 2 competition. Specifically,
we used a kernel method approach for the setup phase and
an image segmentation approach to the main phase. We
experimented with multiple segmentation architectures and
found that U-Nets worked best for this task. Furthermore,
we also considered usage of the game’s metadata values in
our model to see if there would be further improvement.
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Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wil-
son, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J.
Nelson, Eric Jones, Robert Kern, Eric Larson, C. J. Carey,
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Student Name Contributed Aspects Details
Stephen Huan Setup phase, hyperparameter tuning, report writing Kernel methods, dueling bandit algorithms
Daniel Lu Training, experimentation, report writing Tuning framework, architecture, initial classifier
Vedaant Shah Training, architecture, report writing Overall training and U-Net implementations
Jerry Xiong Dataset, preprocessing, report writing Created the dataset and preprocessing pipeline

Table 2. Contributions of team members.

A. Source code
Code for all experiments can be found at the repository

https://github.com/jxiong21029/LuxS2.

B. Work division
The contributions of each team member is as follows.

See also Table 2 for a high-level summary.

Stephen Huan I primarily worked on analyzing factory
placement in the setup phase and developing a possible hy-
perparameter tuning strategy. For the setup phase I decided
to use a kernel method inspired by Gaussian processes, and
coded the estimator, hyperparameter tuning, and integra-
tion into the final agent. I also worked on developing the
hyperparameter tuning algorithm with dueling bandits, im-
plementing four different papers. Correspondingly, I wrote
subsection 2.1 and Appendix C of this report.

Daniel Lu I worked on training and hyperparameter tun-
ing. This involved integrating our chosen models, dataset,
and parameter specification into a custom tuning frame-
work, as well as performing the training and creating vi-
sualizations. Additionally, I worked on a classifier for an
early iteration of the setup phase inspired by Monte-Carlo
Tree Search and contributed towards applying the chosen
architectures. In the report, I focused on the introductory
section 1 (subsection 1.1 and subsection 1.2).

Vedaant Shah I worked on creating the logic for training
and evaluating our model for the main phase of the game.
This included writing the loss function, the training loop
over the dataset, and the evaluation function I also imple-
mented the U-Net architecture in our code as well as the
logic for the model using the metadata. I trained and ob-
tained the results for the model with the U-Net architecture
both with and without the metadata. As such, I wrote sig-
nificant portions of subsection 2.2, section 3, and section 4.

Jerry Xiong In the early phases of the project, I explored
a deep reinforcement learning based approach for this en-
vironment. The bandit-based hyperparameter tuning ap-
proach I encouraged Stephen to work on was an offshoot
of this effort. However, we eventually decided that this was

outside the scope of what we could accomplish in this time-
frame. After pivoting to an imitation learning approach, my
main contributions were downloading and processing the
dataset into a format consumable by neural networks, in-
cluding the board state and metadata inputs and the action
targets. I also experimented with the recall-based action
class-weighting approach. I contributed to section 1, sub-
section 3.1, subsection 4.1, and section 5 of the report.

https://github.com/jxiong21029/LuxS2


C. Dueling bandits for hyperparameter tuning
Initially, we implemented a reinforcement learning ap-

proach for the main phase of the game with an agent play-
ing and learning from its actions. Due to challenges with
the Lux AI environment, we switched to the segmentation-
based supervised learning approach discussed in subsec-
tion 2.2. In this setting, different agents can be compared
by their supervised loss. Here we present our initial ideas
of comparing agents with only black-box game evaluations.

Given two agents, the most natural way to compare them
is to play them against each other. However, because of the
inherent stochasticity in the game and agent strategies, this
is a relatively noisy comparison, perhaps requiring multiple
comparisons to determine which is better. We consider de-
termining the best agent from K agents in the least number
of comparisons, as each comparison requires an computa-
tionally expensive simulation of the game. These K agents
will eventually be models with different hyperparameters.

We model this in the multi-armed dueling bandit frame-
work. While we could use existing probably approximately
correct (PAC) algorithms for maxing and ranking [5], often
they make stringent assumptions on the problem structure
like strong stochastic transitivity (SST). Instead, we will
seek nearly assumptionless algorithms. Since we can run
multiple games in parallel, the batched algorithms of [2, 1]
are compelling, but we believe the overhead of adapting a
sequential algorithm to the parallel setting is not significant.

Following the setup of [24], consider K arms. For the
t-th timestep the algorithm selects two arms (a(1)t , a

(2)
t ) and

receives win (1) or loss (0) based on some preference matrix
p such that P{i ≻ j} := pi,j where i ≻ j means that i won.
We assume pi,j + pj,i = 1 and pi,i := 1/2 and we say an
arm i beats arm j if pi,j > 1/2.

There are many notions of a “best” arm, here we con-
sider two. A Condorcet winner is an arm that beats all
other arms, and may not exist for every preference matrix.
A natural relaxation that always exists is a Copeland win-
ner, which is the arm(s) that beats the most number of other
arms. Note that a Condorcet winner (when it exists) is al-
ways a Copeland winner but the converse is not true.

Specifically, define the (normalized) Copeland score to
be ζi :=

1
K−1

∑
j ̸=i 1(pi,j > 1/2) where 1(·) is the indi-

cator function. Let ζ∗ := max1≤i≤K ζi be the maximum
score; an arm i is a Copeland winner if ζi = ζ∗ and a Con-
dorcet winner if ζi = 1. We define the expected cumulative
Copeland regret of a dueling bandit algorithm to be

R(T ) := ζ∗T − 1

2

T∑
t=1

E
[
ζ
a
(1)
t

+ ζ
a
(2)
t

]
(6)

or intuitively, the accumulated difference from the optimal
arm over T timesteps. Since the regret (6) penalizes un-
necessary comparisons, it can be applied to many notions

of regret. We also define the similar Condorcet regret [19]
where the arm a(cw) is the Condorcet winner as

Rcw(T ) :=
1

2

T∑
t=1

[
∆(a(cw), a

(1)
t ) + ∆(a(cw), a

(2)
t )

]
(7)

where ∆(i, j) := pi,j − 1/2 is the optimality gap between
arm i and j. We now give an overview of existing methods:

• Beat the mean (BTM) [25]

• Scalable Copeland bandits (SCB) [27]

• Relative minimum empirical divergence (RMED) [10]

• Copeland winners RMED (CW-RMED) [11]

• Double Thompson sampling (DTS) [24]

• Versatile dueling bandits (VDB) [19]

BTM assumes a total ordering, i.e. a1 ≻ · · · ≻ aK , a
(relaxed) stochastic transitivity in the sense that for some
γ ≥ 1 and triplet of arms ai ≻ aj ≻ ak, it holds γ∆(i, k) ≥
max{∆(i, j),∆(j, k)}, and a stochastic triangle inequality
in the sense that ∆(i, k) ≤ ∆(i, j) + ∆(j, k). It has regret
O(γ
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∆∗ log T ) where ∆∗ := mini̸=a(cw) ∆(a(cw), i) which

can be adapted to find a (ε, δ)-PAC optimal bandit â in the
sense that P{∆(a(cw), â) > ε} ≤ δ with sample complexity
O(γ

6K
ε2 log KN

δ ) for N := ⌈ 36γ6

ε2 log K3N
δ ⌉.

With probability 1− δ SCB finds a ε-Copeland winner â
in the sense that 1−ζâ ≤ (1−ζ∗)(1+ε) with accumulated
total regret of the form O(K logK log T ).

RMED finds a Condorcet winner with (asymptotically
optimal) regret O(

∑
i ̸=a(cw)

log T
∆(a(cw),i)

) but includes an un-
desirable O(K2) dependency. CW-RMED is an extension
of RMED to the Copeland winner with similar performance.

DTS uses Thompson sampling twice to select both arms.
DTS+ is a slight improvement which cleverly breaks ties.
DTS achieves a Copeland regret of O(K2 log T ) but this
analysis is probably not tight as it performs well in practice.

VDB uses a simple reduction from dueling bandits to in-
dependent standard multi-armed bandits. It uses the “best-
of-both-world” algorithm Tsallis-INF [26] that achieves
both the optimal (pseudo-)regret O(

∑
i̸=a(cw)

log T
∆(a(cw),i)

) in

the stochastic case and O(
√
KT ) regret in the adversarial

case where at every timestep the preference matrix pi,j is al-
lowed to change in response to the bandit algorithm. VDB
basically inherits these regret bounds but its analysis de-
pends significantly on the existence of a Condorcet winner.

We consider four variants of VDB depending on whether
reduced-variance (RV) estimators are used for the loss [26]
and whether the bandits share information by re-using the
same online mirror descent update (remark 2 of [19]).



Figure 5. Regret for T = 1000, 50 trials per timestep.

We implemented BTM, SCB, DTS and DTS+, and the
four aforementioned variants of VDB. Results for SCB are
not shown due to difficulties with its experimental results.

We consider four experimental setups, in order of de-
creasing structural assumptions on the preference matrix p:

• “trivial”: We use the Bradley–Terry–Luce (BTL) or
Plackett-Luce model [19]. Given a list of real scores
r1, . . . , rK , the probability arm i beats arm j is defined
as eri/(eri+erj ). This guarantees a total ordering (and
therefore a Condorcet winner), stochastic transitivity,
and the stochastic triangle inequality. We sample ri in-
dependently and identically (i.i.d) from Unif(0, 100).

• “easy”: We generate a preference matrix p with entries
taken i.i.d. pi,j ∼ Unif(0, 1) for 2 ≤ i < j ≤ K. We
then take p1,j ∼ Unif(1/2, 1) for 2 ≤ j, guaranteeing
that the arm i = 1 is a Condorcet winner.

• “medium:“: We generate random matrices with entries
i.i.d. pi,j ∼ Unif(0, 1) for 1 ≤ i < j ≤ K until p has
multiple (> 1) Copeland winners.

• “hard”: We generate a random matrix like medium but
without resampling for multiple Copeland winners.

For all setups we take K = 10 arms and shuffle the pref-
erence matrix after every trial to remove possible bias from
the ordering. Experiments were implemented using stan-
dard Python scientific libraries numpy [7] and scipy [22].
Plots were produced with matplotlib [9] and seaborn
[23], which generated the shaded confidence intervals.

As shown in Figure 5, DTS+ performs the best or close
to the best over all setups, and of the VDB variants the
reduced-variance estimator with shared information is the

Figure 6. Regret for T = 20, 000, 10 trials per timestep.

best. BTM is barely better than a naive strategy which sim-
ply samples every pair of arms evenly. For the more diffi-
cult setups, the regret of DTS+ and VDB look linear despite
their theoretical regret of O(log T ). Running for a longer
time horizon (Figure 6) shows that DTS+ achieves log scal-
ing while VDB’s regret still looks linear.

Figure 7. Winner recovery rate for T = 1000, 200 trials.

Finally, Figure 7 shows the percentage chance the algo-
rithm recovers the Condorcet winner. DTS+ performs sig-
nificantly better than the naive strategy, while VDB is about
the same or even worse on the harder problem setup.

We think that existing algorithms focus too heavily on
(1) regret minimization and (2) asymptotic scaling. In our
use case, we only want to recover the best arm and do not
mind making poor comparisons along the way. We also
cannot afford taking T → ∞, instead, we need good per-
formance for T ≪ 103. Whether an algorithm with these
performance characteristics exists is an open question.


