Sparse Cholesky Factorization by

 Greedy Conditional SelectionStephen Huan

Theory Club
February 28, 2022

Table of Contents

1. High-level Summary
2. Cholesky Factorization
3. Schur Complement
4. Multivariate Gaussians
5. Gaussian Process Regression
6. Sparse Cholesky Factorization

7. References

The Problem: Gaussian Process Regression

Measurements $\boldsymbol{y}_{\mathrm{Tr}}$ at N points X_{Tr}

The Problem: Gaussian Process Regression

Measurements $\boldsymbol{y}_{\mathrm{Tr}}$ at N points X_{Tr}

Estimate unseen data $\boldsymbol{y}_{\mathrm{Pr}}$ at X_{Pr}

The Problem: Gaussian Process Regression

Measurements $\boldsymbol{y}_{\mathrm{Tr}}$ at N points X_{Tr}

Estimate unseen data $\boldsymbol{y}_{\mathrm{Pr}}$ at X_{Pr}
Model as Gaussian process
\rightarrow condition on $\boldsymbol{y}_{\mathrm{Tr}}$

The Problem: Gaussian Process Regression

Measurements $\boldsymbol{y}_{\mathrm{Tr}}$ at N points X_{Tr}

Estimate unseen data $\boldsymbol{y}_{\mathrm{Pr}}$ at X_{Pr}
Model as Gaussian process
\rightarrow condition on $\boldsymbol{y}_{\mathrm{Tr}}$
Computational cost scales as N^{3}

The Problem: Gaussian Process Regression

Measurements $\boldsymbol{y}_{\mathrm{Tr}}$ at N points X_{Tr}

Estimate unseen data $\boldsymbol{y}_{\mathrm{Pr}}$ at X_{Pr}
Model as Gaussian process
\rightarrow condition on $\boldsymbol{y}_{\mathrm{Tr}}$
Computational cost scales as N^{3}

Choose k most informative points!

Conditional k-th Nearest Neighbors

Naive: select k closest points

Conditional k-th Nearest Neighbors

Naive: select k closest points
Chooses redundant information

Conditional k-th Nearest Neighbors

Naive: select k closest points
Chooses redundant information

Maximize mutual information!

Conditional k-th Nearest Neighbors

Naive: select k closest points
Chooses redundant information

Maximize mutual information!

Conditional k-th Nearest Neighbors

Naive: select k closest points
Chooses redundant information

Maximize mutual information!

Direct computation: $\mathcal{O}\left(N k^{4}\right)$

Conditional k-th Nearest Neighbors

Naive: select k closest points
Chooses redundant information

Maximize mutual information!

Direct computation: $\mathcal{O}\left(N k^{4}\right)$
Store Cholesky factor $\rightarrow \mathcal{O}\left(N k^{2}\right)$!

Cholesky Factorization by Selection

Apply column-wise
\rightarrow sparse approx. of GP

Cholesky Factorization by Selection

Apply column-wise
\rightarrow sparse approx. of GP

Maximum mutual information \rightarrow minimum KL divergence

Cholesky Factorization by Selection

Apply column-wise
\rightarrow sparse approx. of GP

Maximum mutual information \rightarrow minimum KL divergence

Improves approx. algorithm of ${ }^{1}$

${ }^{1}$ F. Schäfer, M. Katzfuss, and H. Owhadi, "Sparse Cholesky factorization by Kullback-Leibler minimization," arXiv preprint arXiv:2004.14455, 2020

Table of Contents

1. High-level Summary

2. Cholesky Factorization
3. Schur Complement
4. Multivariate Gaussians
5. Gaussian Process Regression
6. Sparse Cholesky Factorization

7. References

LU Decomposition
 and its symmetric counterpart

$M=L U$ where L is lower triangular and U is upper triangular

LU Decomposition

$M=L U$ where L is lower triangular and U is upper triangular

Not always possible, need $P L U$ in general!

and its symmetric counterpart

$L U$ where L is lower triangular and U is upper triangular
造蚛vays possible, need $P L U$ in general!

Special case for (square) symmetric matrices:
Theorem
If $M=M^{\top}$ and $\operatorname{det}(M) \neq 0$, then $M=L D L^{T}$ where L is from the $L U$ decomposition of M and D is the diagonal of U.

LU Decomposition

and its symmetric counterpart

where L is lower triangular and U is upper triangular

Special case for (square) symmetric matrices:
Theorem
If $M=M^{\top}$ and $\operatorname{det}(M) \neq 0$, then $M=L D L^{T}$ where L is from the $L U$ decomposition of M and D is the diagonal of U.

Proof sketch.

(MATH3406 Fall 2021, Prof. Wing Li) Let $M=L D K$. Just do matrix multiplication on $M=M^{\top} \Longrightarrow(L D K)=(L D K)^{T}$.
From matrix multiplication, able to see $K=L^{\top}$.

Cholesky Factorization

Let M be (symmetric) positive definite.

Cholesky Factorization

Then $M=L D L^{\top}$ becomes $L L^{\top}$:

$$
\begin{aligned}
M & =L D L^{\top} \\
& =L D^{\frac{1}{2}} D^{\frac{1}{2}} L^{\top} \\
& =L D^{\frac{1}{2}}\left(L D^{\frac{1}{2}}\right)^{\top} \\
& =L^{\prime} L^{\prime \top}
\end{aligned}
$$

Then $M=L D L^{\top}$ becomes $L L^{\top}$:

$$
\begin{aligned}
M & =L D L^{\top} \\
& =L D^{\frac{1}{2}} D^{\frac{1}{2}} L^{\top} \\
& =L D^{\frac{1}{2}}\left(L D^{\frac{1}{2}}\right)^{\top} \\
& =L^{\prime} L^{\prime \top}
\end{aligned}
$$

This is the Cholesky factorization!

Why Do We Care?

$\Theta=L L^{\top}, L$ has N columns, s non-zero entries per column
$L \boldsymbol{v}$ and $L^{-1} \boldsymbol{v}$ both cost $\mathcal{O}(N s)$
Matrix-vector product $\Theta \boldsymbol{v} \rightarrow L\left(L^{\top} \boldsymbol{v}\right)$

$$
N^{2} \rightarrow N s
$$

Solving linear system $\Theta^{-1} \boldsymbol{v} \rightarrow L^{-\top}\left(L^{-1} \boldsymbol{v}\right)$

$$
N^{3} \rightarrow N s
$$

Log determinant $\log \operatorname{det} \Theta \rightarrow 2 \log \operatorname{det} L=2 \sum_{i=1}^{N} \log L_{i i}$

$$
N^{3} \rightarrow N
$$

Sampling from $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \Theta) \rightarrow \boldsymbol{z} \sim \mathcal{N}(\mathbf{0}, I), \boldsymbol{x}=L \boldsymbol{z}+\boldsymbol{\mu}$

$$
? ? ? \rightarrow N s
$$

Why Do We Care?

$\Theta=L L^{\top}, L$ has N columns, s non-zero entries per column
$L \boldsymbol{v}$ and $L^{-1} \boldsymbol{v}$ both cost $\mathcal{O}(N s)$
Matrix-vector product $\Theta \boldsymbol{v} \rightarrow L\left(L^{\top} \boldsymbol{v}\right)$

$$
N^{2} \rightarrow N s
$$

Solving linear system $\Theta^{-1} \boldsymbol{v} \rightarrow L^{-\top}\left(L^{-1} \boldsymbol{v}\right)$

$$
N^{3} \rightarrow N s
$$

Log determinant $\log \operatorname{det} \Theta \rightarrow 2 \log \operatorname{det} L=2 \sum_{i=1}^{N} \log L_{i i}$

$$
N^{3} \rightarrow N
$$

Sampling from $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \Theta) \rightarrow \boldsymbol{z} \sim \mathcal{N}(\mathbf{0}, I), \boldsymbol{x}=L \boldsymbol{z}+\boldsymbol{\mu}$

$$
? ? ? \rightarrow N s
$$

Computing the Cholesky Factorization

Down-looking
Like LU

Gaussian elimination downwards

```
def down_cholesky(theta: np.ndarray) -> np.ndarray:
    M, n = np.copy(theta), len(theta)
    L = np.identity(n)
    for i in range(n):
        for j in range(i + 1, n):
            L[j, i] = M[j, i]/M[i, i]
            # zero out everything below
            M[j] -= L[j, i]*M[i]
        # update L
        L[:, i] *= np.sqrt(M[i, i])
    return L
```


Computing the Cholesky Factorization

Like LU

Gaussian elimination downwards

```
def down_cholesky(theta: np.ndarray) -> np
    M, n = np.copy(theta), len(theta)
    L = np.identity(n)
    for i in range(n):
        for j in range(i + 1, n):
            L[j, i] = M[j, i]/M[i, i]
            # zero out everything below
            M[j] -= L[j, i] *M[i]
        # update L
        L[:, i] *= np.sqrt(M[i, i])
    return L
```


Computing the Cholesky Factorization

Up-looking
Let L^{\prime} be blocked according to:

$$
\begin{aligned}
L^{\prime} & =\left(\begin{array}{cc}
L & \mathbf{0} \\
\boldsymbol{r}^{\top} & d
\end{array}\right) \\
L^{\prime} L^{\prime \top} & =\left(\begin{array}{cc}
L & \mathbf{0} \\
\boldsymbol{r}^{\top} & d
\end{array}\right)\left(\begin{array}{ll}
L^{\top} & \boldsymbol{r} \\
\mathbf{0}^{\top} & d
\end{array}\right) \\
& =\left(\begin{array}{cc}
L L^{\top} & L \boldsymbol{r} \\
\boldsymbol{r}^{\top} L^{\top} & \boldsymbol{r}^{\top} \boldsymbol{r}+d^{2}
\end{array}\right)
\end{aligned}
$$

So if we have a Cholesky factor for a principle submatrix of Θ, we can extend it inductively by reading off the appropiate data!

$$
\begin{aligned}
\left(\begin{array}{cc}
L L^{\top} & L \boldsymbol{r} \\
\boldsymbol{r}^{\top} L^{\top} & \boldsymbol{r}^{\top} \boldsymbol{r}+d^{2}
\end{array}\right) & =\left(\begin{array}{cc}
\Theta & \boldsymbol{c} \\
\boldsymbol{c}^{\top} & C
\end{array}\right) \\
\boldsymbol{r} & =L^{-1} \boldsymbol{c} \\
d & =\sqrt{C-\boldsymbol{r}^{\top} \boldsymbol{r}}
\end{aligned}
$$

Computing the Cholesky Factorization

Let L^{\prime} be blocked according to:

$$
\begin{aligned}
L^{\prime} & =\left(\begin{array}{cc}
L & \mathbf{0} \\
\boldsymbol{r}^{\top} & d
\end{array}\right) \\
L^{\prime} L^{\prime \top} & =\left(\begin{array}{cc}
L & \mathbf{0} \\
\boldsymbol{r}^{\top} & d
\end{array}\right)\left(\begin{array}{ll}
L^{\top} & \boldsymbol{r} \\
\mathbf{0}^{\top} & d
\end{array}\right) \\
& =\left(\begin{array}{cc}
L L^{\top} & L \boldsymbol{r} \\
\boldsymbol{r}^{\top} L^{\top} & \boldsymbol{r}^{\top} \boldsymbol{r}+d^{2}
\end{array}\right)
\end{aligned}
$$

So if we have a Cholesky factor for a principle submatrix of Θ, we can extend it inductively by reading off the appropiate data!

$$
\begin{aligned}
\left(\begin{array}{cc}
L L^{\top} & L \boldsymbol{r} \\
\boldsymbol{r}^{\top} L^{\top} & \boldsymbol{r}^{\top} \boldsymbol{r}+d^{2}
\end{array}\right) & =\left(\begin{array}{cc}
\Theta & \boldsymbol{c} \\
\boldsymbol{c}^{\top} & C
\end{array}\right) \\
\boldsymbol{r} & =L^{-1} \boldsymbol{c} \\
d & =\sqrt{C-\boldsymbol{r}^{\top} \boldsymbol{r}}
\end{aligned}
$$

Computing the Cholesky Factorization

```
def Lsolve(L: np.ndarray, y: np.ndarray) -> np.ndarray:
        """ Solves Lx = y for lower triangular L. """
    n = len(y)
    x = np.zeros(n)
    for i in range(n):
        x[i] = (y[i] - L[i, :i].dot(x[:i]))/L[i, i]
    return x
def up_cholesky(theta: np.ndarray) -> np.ndarray:
    n = len(theta)
    L = np.zeros((n, n))
    for i in range(n):
        row = Lsolve(L, theta[:i, i])
        L[i, :i] = row
        L[i, i] = np.sqrt(theta[i, i] - row.dot(row))
        return L
```


Computing the Cholesky Factorization

Up-looking

```
def Lsolve(L: np.ndarray, y: np.ndarray) -> np.ndarray:
        """Solves Lx = y for lower triangular L. """
        Os (n)
        se(n):
            [i] - L[i, :i].dot(x[:i]))/L[i, i]
def up_cholesky(theta: np.ndarray) -> np.ndarray:
    n = len(theta)
    L = np.zeros((n, n))
    for i in range(n):
        row = Lsolve(L, theta[:i, i])
        L[i, :i] = row
        L[i, i] = np.sqrt(theta[i, i] - row.dot(row))
    return L
```


Computing the Cholesky Factorization

Right-looking

$$
\begin{aligned}
L & =\left(\begin{array}{llll}
\boldsymbol{l}_{1} & \boldsymbol{l}_{2} & \cdots & \boldsymbol{l}_{N}
\end{array}\right) \\
L L^{\top} & =\left(\begin{array}{llll}
\boldsymbol{l}_{1} & \boldsymbol{l}_{2} & \cdots & \boldsymbol{l}_{N}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{l}_{1}^{\top} \\
\boldsymbol{l}_{2}^{\top} \\
\vdots \\
\boldsymbol{l}_{N}^{\top}
\end{array}\right) \\
& =\boldsymbol{l}_{1} \boldsymbol{l}_{1}^{\top}+\boldsymbol{l}_{2} \boldsymbol{l}_{2}^{\top}+\cdots+\boldsymbol{l}_{N} \boldsymbol{l}_{N}^{\top}=\Theta
\end{aligned}
$$

From lower triangularity, nested submatrices!

Computing the Cholesky Factorization

Right-looking

From lower triangularity, nested submatrices!

Computing the Cholesky Factorization

Right-looking

$$
\begin{aligned}
\boldsymbol{l}_{1} \boldsymbol{l}_{1}^{\top}+\boldsymbol{l}_{2} \boldsymbol{l}_{2}^{\top}+\cdots+\boldsymbol{l}_{N} \boldsymbol{l}_{N}^{\top} & =\Theta \\
\boldsymbol{l}_{1} \boldsymbol{l}_{1}^{\top} & =\Theta_{1} \\
l_{1}^{2} & =\Theta_{11} \\
l_{1} & =\sqrt{\Theta_{11}} \\
\boldsymbol{l}_{1} & =\frac{\Theta_{1}}{l_{1}}=\frac{\Theta_{1}}{\sqrt{\Theta_{11}}} \\
\boldsymbol{l}_{2} \boldsymbol{l}_{2}^{\top}+\cdots+\boldsymbol{l}_{N} \boldsymbol{l}_{N}^{\top} & =\Theta-\left(\frac{\Theta_{1}}{\sqrt{\Theta_{11}}}\right)\left(\frac{\Theta_{1}}{\sqrt{\Theta_{11}}}\right)^{\top} \\
& =\Theta-\frac{\Theta_{1} \Theta_{1}^{\top}}{\Theta_{11}}
\end{aligned}
$$

Proceed inductively on rank-one update

Computing the Cholesky Factorization

Right-looking

$$
\begin{aligned}
\boldsymbol{l}_{1} \boldsymbol{l}_{1}^{\top}+\boldsymbol{l}_{2} \boldsymbol{l}_{2}^{\top}+\cdots+\boldsymbol{l}_{N} \boldsymbol{l}_{N}^{\top} & =\Theta \\
\boldsymbol{l}_{1} \boldsymbol{l}_{1}^{\top} & =\Theta_{1} \\
\boldsymbol{l}_{2} \boldsymbol{l}_{2}^{\top}+\cdots+\boldsymbol{l}_{N} \boldsymbol{l}_{N}^{\top} & =\Theta-\left(\frac{\Theta_{1}}{\sqrt{\Theta_{11}}}\right)\left(\frac{\Theta_{1}}{\sqrt{\Theta_{11}}}\right)^{\top} \\
& =\Theta-\frac{\Theta_{1} \Theta_{1}^{\top}}{\Theta_{11}}
\end{aligned}
$$

Proceed inductively on rank-one update

Computing the Cholesky Factorization

Right-looking

```
def right_cholesky(theta: np.ndarray) -> np.ndarray:
    M, n = np.copy(theta), len(theta)
    L = np.zeros((n, n))
    for i in range(n):
    L[:, i] = M[:, i]/np.sqrt(M[i, i])
        M -= np.outer(L[:, i], L[:, i])
    return L
```


Computing the Cholesky Factorization

Left-looking

Recall:
$\boldsymbol{l}_{1} \boldsymbol{l}_{1}^{\top}+\boldsymbol{l}_{2} \boldsymbol{l}_{2}^{\top}+\cdots+\boldsymbol{l}_{N} \boldsymbol{l}_{N}^{\top}=\Theta$
Look at l_{i} :

$$
\left.\begin{array}{rl}
\boldsymbol{l}_{i} \boldsymbol{l}_{i}^{\top} & =\left(\Theta-\left(\boldsymbol{l}_{1} \boldsymbol{l}_{1}^{\top}+\boldsymbol{l}_{2} \boldsymbol{l}_{2}^{\top}+\cdots+\boldsymbol{l}_{i-1} \boldsymbol{l}_{i-1}^{\top}\right)\right)_{i} \\
& =\Theta_{i}-\left(l_{1 i} \boldsymbol{l}_{1}+l_{2 i} \boldsymbol{l}_{2}+\cdots+l_{i-1, i} \boldsymbol{l}_{i-1}\right.
\end{array}\right) .\left(\begin{array}{c}
l_{1 i} \\
l_{2 i} \\
\vdots \\
l_{i, i-1}
\end{array}\right)
$$

Don't need to store modified Θ in memory!

Computing the Cholesky Factorization

Left-looking

Recall:
$\boldsymbol{l}_{1} \boldsymbol{l}_{1}^{\top}+\boldsymbol{l}_{2} \boldsymbol{l}_{2}^{\top}+\cdots+\boldsymbol{l}_{N} \boldsymbol{l}_{N}^{\top}=\Theta$
Look at l_{i} :

Don't need to store modified Θ in memory!

Computing the Cholesky Factorization

Left-looking

```
def left_cholesky(theta: np.ndarray) -> np.ndarray:
    n = len(theta)
    L = np.zeros((n, n))
    for i in range(n):
        L[:, i] = theta[:, i] - L[:, :i]@L[i, :i]
        L[:, i] /= np.sqrt(L[i, i])
    return L
```


Computing the Cholesky Factorization

Left-looking

1 def left_cholesky(theta: np.ndarray) -> np.ndarray:

Table of Contents

1. High-level Summary

2. Cholesky Factorization

3. Schur Complement
4. Multivariate Gaussians
5. Gaussian Process Regression
6. Sparse Cholesky Factorization

7. References

Schur Complement

Block Θ as follows:

$$
\Theta=\left(\begin{array}{ll}
\Theta_{11} & \Theta_{12} \\
\Theta_{21} & \Theta_{22}
\end{array}\right)
$$

Then proceed by one step of Gaussian elimination:

$$
\left(\begin{array}{cc}
\Theta_{11} & \Theta_{12} \\
\mathbf{0} & \Theta_{22}-\Theta_{21} \Theta_{11}^{-1} \Theta_{12}
\end{array}\right)
$$

Thus,

$$
=\left(\begin{array}{cc}
I & 0 \\
\Theta_{21} \Theta_{11}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
\Theta_{11} & 0 \\
0 & \Theta_{22}-\Theta_{21} \Theta_{11}^{-1} \Theta_{12}
\end{array}\right)\left(\begin{array}{cc}
I & \Theta_{11}^{-1} \Theta_{12} \\
0 & I
\end{array}\right)
$$

so we see the Cholesky factorization of Θ is

$$
\left(\begin{array}{cc}
I & 0 \\
\Theta_{21} \Theta_{11}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
\operatorname{chol}\left(\Theta_{11}\right) & 0 \\
0 & \operatorname{chol}\left(\Theta_{22}-\Theta_{21} \Theta_{11}^{-1} \Theta_{12}\right)
\end{array}\right)
$$

The term in blue is the Schur complement of Θ on Θ_{11}

Schur Complement

Block Θ as follows:

$$
\Theta=\left(\begin{array}{ll}
\Theta_{11} & \Theta_{12} \\
\Theta_{21} & \Theta_{22}
\end{array}\right)
$$

Then proceed by one step of Gaussian elimination:

$$
\left(\begin{array}{cc}
\Theta_{11} & \Theta_{12} \\
\mathbf{0} & \Theta_{22}-\Theta_{21} \Theta_{11}^{-1} \Theta_{12}
\end{array}\right)
$$

Thus,

$$
=\left(\begin{array}{cc}
I & 0 \\
\Theta_{21} \Theta_{11}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
\Theta_{11} & 0 \\
0 & \Theta_{22}-\Theta_{21} \Theta_{11}^{-1} \Theta_{12}
\end{array}\right)\left(\begin{array}{cc}
I & \Theta_{11}^{-1} \Theta_{12} \\
0 & I
\end{array}\right)
$$

so we see the Cholesky factorization of Θ is

$$
\left(\begin{array}{cc}
I & 0 \\
\Theta_{21} \Theta_{11}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
\operatorname{chol}\left(\Theta_{11}\right) & 0 \\
0 & \operatorname{chol}\left(\Theta_{22}-\Theta_{21} \Theta_{11}^{-1} \Theta_{12}\right)
\end{array}\right)
$$

The term in blue is the Schur complement of Θ on Θ_{11}

Proper Determinant of Block Matrix

$$
\begin{array}{rlr}
\Theta & =\left(\begin{array}{ll}
\Theta_{11} & \Theta_{12} \\
\Theta_{21} & \Theta_{22}
\end{array}\right) & \\
\operatorname{det}(\Theta) & =? & \\
& =\operatorname{det}\left(\Theta_{11}\right) \operatorname{det}\left(\Theta_{22}\right)-\operatorname{det}\left(\Theta_{21}\right) \operatorname{det}\left(\Theta_{12}\right) ? & \text { wrong! } \\
& =\operatorname{det}\left(\Theta_{11} \Theta_{22}-\Theta_{21} \Theta_{12}\right) ? & \text { wrong! }
\end{array}
$$

Schur complement gives proper answer:

$$
\begin{aligned}
\Theta & =\left(\begin{array}{cc}
I & 0 \\
\Theta_{21} \Theta_{11}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
\Theta_{11} & 0 \\
0 & \Theta_{22}-\Theta_{21} \Theta_{11}^{-1} \Theta_{12}
\end{array}\right)\left(\begin{array}{cc}
I & \Theta_{11}^{-1} \Theta_{12} \\
0 & I
\end{array}\right) \\
\operatorname{det}(\Theta) & =\operatorname{det}\left(\Theta_{11}\right) \operatorname{det}\left(\Theta_{22}-\Theta_{21} \Theta_{11}^{-1} \Theta_{12}\right)
\end{aligned}
$$

Proper Determinant of Block Matrix

$$
\begin{array}{rlr}
\Theta & =\left(\begin{array}{ll}
\Theta_{11} & \Theta_{12} \\
\Theta_{21} & \Theta_{22}
\end{array}\right) \\
\operatorname{det}(\Theta) & =? & \\
& =\operatorname{det}\left(\Theta_{11}\right) \operatorname{det}\left(\Theta_{22}\right)-\operatorname{det}\left(\Theta_{21}\right) \operatorname{det}\left(\Theta_{12}\right) ? & \text { wrong! } \\
& =\operatorname{det}\left(\Theta_{11} \Theta_{22}-\Theta_{21} \Theta_{12}\right) ? & \text { wrong! }
\end{array}
$$

Schur complement gives proper answer:

Proper Submatrix of Inverse

$$
\begin{aligned}
\Theta & =\left(\begin{array}{ll}
\Theta_{11} & \Theta_{12} \\
\Theta_{21} & \Theta_{22}
\end{array}\right) \\
\left(\Theta^{-1}\right)_{22} & =? \\
& =\left(\Theta_{22}\right)^{-1} ? \quad \text { wrong! }
\end{aligned}
$$

Schur complement to the rescue again!

Proper Submatrix of Inverse

$$
\Theta=\left(\begin{array}{cc}
I & 0 \\
\Theta_{21} \Theta_{11}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
\Theta_{11} & 0 \\
0 & \Theta_{22}-\Theta_{21} \Theta_{11}^{-1} \Theta_{12}
\end{array}\right)\left(\begin{array}{cc}
I & \Theta_{11}^{-1} \Theta_{12} \\
0 & I
\end{array}\right)
$$

For notational convenience, we denote the Schur complement $\Theta_{22}-\Theta_{21} \Theta_{11}^{-1} \Theta_{12}$ as $\Theta_{22 \mid 1}$. Inverting both sides of the equation,

$$
\begin{aligned}
\Theta^{-1} & =\left(\begin{array}{cc}
I & -\Theta_{11}^{-1} \Theta_{12} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
\Theta_{11}^{-1} & 0 \\
0 & \Theta_{22 \mid 1}^{-1}
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
-\Theta_{21} \Theta_{11}^{-1} & I
\end{array}\right) \\
& =\left(\begin{array}{cc}
\Theta_{11}^{-1}+\left(\Theta_{11}^{-1} \Theta_{12}\right) \Theta_{22 \mid 1}^{-1}\left(\Theta_{21} \Theta_{11}^{-1}\right) & -\left(\Theta_{11}^{-1} \Theta_{12}\right) \Theta_{22 \mid 1}^{-1} \\
-\Theta_{22 \mid 1}^{-1}\left(\Theta_{21} \Theta_{11}^{-1}\right) & \Theta_{22 \mid 1}^{-1}
\end{array}\right)
\end{aligned}
$$

So $\left(\Theta^{-1}\right)_{22}$ can be read off as $\Theta_{22 \mid 1}^{-1}$,

$$
=\left(\Theta_{22}-\Theta_{21} \Theta_{11}^{-1} \Theta_{12}\right)^{-1}
$$

Proper Submatrix of Inverse

$$
\Theta=\left(\begin{array}{cc}
I & 0 \\
\Theta_{21} \Theta_{11}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
\Theta_{11} & 0 \\
0 & \Theta_{22}-\Theta_{21} \Theta_{11}^{-1} \Theta_{12}
\end{array}\right)\left(\begin{array}{cc}
I & \Theta_{11}^{-1} \Theta_{12} \\
0 & I
\end{array}\right)
$$

For notational convenience, we denote the Schur complement $\Theta_{22}-\Theta_{21} \Theta_{11}^{-1} \Theta_{12}$ as $\Theta_{22 \mid 1}$. Inverting both sides of the equation,

$$
\begin{aligned}
\Theta^{-1} & =\left(\begin{array}{cc}
I & -\Theta_{11}^{-1} \Theta_{12} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
\Theta_{11}^{-1} & 0 \\
0 & \Theta_{22 \mid 1}^{-1}
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
-\Theta_{21} \Theta_{11}^{-1} & I
\end{array}\right) \\
& =\left(\begin{array}{cc}
\Theta_{11}^{-1}+\left(\Theta_{11}^{-1} \Theta_{12}\right) \Theta_{22 \mid 1}^{-1}\left(\Theta_{21} \Theta_{11}^{-1}\right) & -\left(\Theta_{11}^{-1} \Theta_{12}\right) \Theta_{22 \mid 1}^{-1} \\
-\Theta_{22 \mid 1}^{-1}\left(\Theta_{21} \Theta_{11}^{-1}\right) & \Theta_{22 \mid 1}^{-1}
\end{array}\right)
\end{aligned}
$$

So $\left(\Theta^{-1}\right)_{22}$ can be read off as Θ_{2}^{-1}

$$
=\left(\Theta_{22}-\Theta_{21} \Theta_{11}^{-1} \Theta_{12}\right)^{-1} .
$$

A Few Important Questions...

Is the Schur complement symmetric positive definite (s.p.d.)?

A Few Important Questions...

Is the Schur complement symmetric positive definite (s.p.d.)? If it isn't, we're kinda screwed - have been assuming so

A Few Important Questions...

Is the Schur complement symmetric positive definite (s.p.d.)? If it isn't, we're kinda screwed - have been assuming so

Is Schur complementing transitive?

A Few Important Questions...

Is the Schur complement symmetric positive definite (s.p.d.)? If it isn't, we're kinda screwed - have been assuming so

Is Schur complementing transitive?
i.e. suppose we have Θ blocked as

$$
\Theta=\left(\begin{array}{ccc}
\Theta_{11} & \Theta_{12} & \Theta_{13} \\
\Theta_{21} & \Theta_{22} & \Theta_{23} \\
\Theta_{31} & \Theta_{32} & \Theta_{33}
\end{array}\right)
$$

A Few Important Questions...

Is the Schur complement symmetric positive definite (s.p.d.)? If it isn't, we're kinda screwed - have been assuming so

Is Schur complementing transitive?
i.e. suppose we have Θ blocked as

$$
\Theta=\left(\begin{array}{ccc}
\Theta_{11} & \Theta_{12} & \Theta_{13} \\
\Theta_{21} & \Theta_{22} & \Theta_{23} \\
\Theta_{31} & \Theta_{32} & \Theta_{33}
\end{array}\right)
$$

Is Θ complemented on Θ_{11} and then on Θ_{22} the same as
Θ complemented on $\left(\begin{array}{ll}\Theta_{11} & \Theta_{12} \\ \Theta_{21} & \Theta_{22}\end{array}\right)$?

A Few Important Questions...

Is the Schur complement symmetric positive definite (s.p.d.)? If it isn't, we're kinda screwed - have been assuming so

Is Schur complementing transitive?
i.e. suppose we have Θ blocked as

$$
\Theta=\left(\begin{array}{ccc}
\Theta_{11} & \Theta_{12} & \Theta_{13} \\
\Theta_{21} & \Theta_{22} & \Theta_{23} \\
\Theta_{31} & \Theta_{32} & \Theta_{33}
\end{array}\right)
$$

Is Θ complemented on Θ_{11} and then on Θ_{22} the same as
Θ complemented on $\left(\begin{array}{ll}\Theta_{11} & \Theta_{12} \\ \Theta_{21} & \Theta_{22}\end{array}\right)$?
Intuitively, it should be, but tedious to prove

A Few Important Questions...

Is the Schur complement symmetric positive definite (s.p.d.)? If it isn't, we're kinda screwed - have been assuming so

Is Schur complementing transitive?
i.e. suppose we have Θ blocked as

$$
\Theta=\left(\begin{array}{ccc}
\Theta_{11} & \Theta_{12} & \Theta_{13} \\
\Theta_{21} & \Theta_{22} & \Theta_{23} \\
\Theta_{31} & \Theta_{32} & \Theta_{33}
\end{array}\right)
$$

Is Θ complemented on Θ_{11} and then on Θ_{22} the same as
Θ complemented on $\left(\begin{array}{ll}\Theta_{11} & \Theta_{12} \\ \Theta_{21} & \Theta_{22}\end{array}\right)$?
Intuitively, it should be, but tedious to prove
New perspective which changes everything!

Table of Contents

1. High-level Summary
2. Cholesky Factorization
3. Schur Complement
4. Multivariate Gaussians
5. Gaussian Process Regression
6. Sparse Cholesky Factorization

7. References

The Multivariate Gaussian

Recall: Gaussian (or normal) distribution:

$$
\begin{aligned}
x & \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \\
f(x) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}}
\end{aligned}
$$

The Multivariate Gaussian

Recall: Gaussian (or normal) distribution:

$$
\begin{aligned}
x & \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \\
f(x) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}}
\end{aligned}
$$

Important (defining?) property: completely determined by mean and variance, all higher-order cumulants zero.

The Multivariate Gaussian

Recall: Gaussian (or normal) distribution:

$$
\begin{aligned}
x & \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \\
f(x) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}}
\end{aligned}
$$

Important (defining?) property: completely determined by mean and variance, all higher-order cumulants zero.

We're going to extend this to higher dimensions. Consider

$$
\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)
$$

where \boldsymbol{x} ("variables") is a $N \times 1$ vector, $\boldsymbol{\mu}$ ("mean vector") is a $N \times 1$ vector, and Σ ("covariance matrix") is a $N \times N$ matrix

Defining Everything

Naturally,

$$
\begin{aligned}
\mu_{i} & =\mathrm{E}\left[x_{i}\right] \\
\boldsymbol{\mu} & =\mathrm{E}[\boldsymbol{x}] \\
\Sigma_{i j} & =\operatorname{Cov}\left[x_{i}, x_{j}\right] \\
& =\mathrm{E}\left[\left(x_{i}-\mathrm{E}\left[x_{i}\right]\right)\left(x_{j}-\mathrm{E}\left[x_{j}\right]\right)\right] \\
& =\mathrm{E}\left[(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\right]
\end{aligned}
$$

Defining Everything

Naturally,

$$
\begin{aligned}
\mu_{i} & =\mathrm{E}\left[x_{i}\right] \\
\boldsymbol{\mu} & =\mathrm{E}[\boldsymbol{x}] \\
\Sigma_{i j} & =\operatorname{Cov}\left[x_{i}, x_{j}\right] \\
& =\mathrm{E}\left[\left(x_{i}-\mathrm{E}\left[x_{i}\right]\right)\left(x_{j}-\mathrm{E}\left[x_{j}\right]\right)\right] \\
& =\mathrm{E}\left[(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\right]
\end{aligned}
$$

Two natural (and fundamental) questions from here:

1. What is the probability density function $f(\boldsymbol{x})$?
2. How can we sample from $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$?

Defining Everything

Naturally,

$$
\begin{aligned}
\mu_{i} & =\mathrm{E}\left[x_{i}\right] \\
\boldsymbol{\mu} & =\mathrm{E}[\boldsymbol{x}] \\
\Sigma_{i j} & =\operatorname{Cov}\left[x_{i}, x_{j}\right] \\
& =\mathrm{E}\left[\left(x_{i}-\mathrm{E}\left[x_{i}\right]\right)\left(x_{j}-\mathrm{E}\left[x_{j}\right]\right)\right] \\
& =\mathrm{E}\left[(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\right]
\end{aligned}
$$

Two natural (and fundamental) questions from here:

1. What is the probability density function $f(\boldsymbol{x})$?
2. How can we sample from $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$?

Surprisingly enough, Cholesky factorization answers both!

Defining Everything

Naturally,

$$
\begin{aligned}
\mu_{i} & =\mathrm{E}\left[x_{i}\right] \\
\boldsymbol{\mu} & =\mathrm{E}[\boldsymbol{x}] \\
\Sigma_{i j} & =\operatorname{Cov}\left[x_{i}, x_{j}\right] \\
& =\mathrm{E}\left[\left(x_{i}-\mathrm{E}\left[x_{i}\right]\right)\left(x_{j}-\mathrm{E}\left[x_{j}\right]\right)\right] \\
& =\mathrm{E}\left[(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\right]
\end{aligned}
$$

Two natural (and fundamental) questions from here:

1. What is the probability density function $f(\boldsymbol{x})$?
2. How can we sample from $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$?

Surprisingly enough, Cholesky factorization answers both!

Independent Variables

Gaussian has the (unique?) property if $\Sigma_{i j}=0$, then x_{i} and x_{j} are statistically independent. This is not true in general!

Independent Variables

Gaussian has the (unique?) property if $\Sigma_{i j}=0$, then x_{i} and x_{j} are statistically independent. This is not true in general!

Key property we will make heavy use of: moment matching. If we know $\boldsymbol{\mu}$ and Σ, distribution is determined.

Independent Variables

Gaussian has the (unique?) property if $\Sigma_{i j}=0$, then x_{i} and x_{j} are statistically independent. This is not true in general!

Key property we will make heavy use of: moment matching. If we know $\boldsymbol{\mu}$ and Σ, distribution is determined.

Consider: if x_{i} and x_{j} were independent, then $\Sigma_{i j}=0$. So suppose x_{i} and x_{j} are not independent but $\Sigma_{i j}=0$. It's the same Σ as when they were independent. So x_{i} and x_{j} must be distributed like they're independent. By contradiction, they must have been independent in the first place!

Independent Variables

Gaussian has the (unique?) property if $\Sigma_{i j}=0$, then x_{i} and x_{j} are statistically independent. This is not true in general!

Key property we will make heavy use of: moment matching. If we know $\boldsymbol{\mu}$ and Σ, distribution is determined.

Consider: if x_{i} and x_{j} were independent, then $\Sigma_{i j}=0$. So suppose x_{i} and x_{j} are not independent but $\Sigma_{i j}=0$. It's the same Σ as when they were independent. So x_{i} and x_{j} must be distributed like they're independent. By contradiction, they must have been independent in the first place!

Completely Independent Variables

Well, if Σ has particular structure, it's actually trivial:

$$
\begin{aligned}
\boldsymbol{z} & \sim \mathcal{N}\left(\mathbf{0}, I_{N}\right) \\
z_{i} & \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1) \\
f(\boldsymbol{z}) & =\prod_{i=1}^{N} f\left(z_{i}\right) \\
& =\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z_{i}^{2}} \\
& =\frac{1}{\sqrt{(2 \pi)^{N}}} e^{-\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}+\cdots+z_{N}^{2}\right)} \\
& =\frac{1}{\sqrt{(2 \pi)^{N}}} e^{-\frac{1}{2} \boldsymbol{z}^{\top} \boldsymbol{z}}
\end{aligned}
$$

Completely Independent Variables

Well, if Σ has particular structure, it's actually trivial:

$$
\begin{aligned}
\boldsymbol{z} & \sim \mathcal{N}\left(\mathbf{0}, I_{N}\right) \\
z_{i}(\boldsymbol{z}) & =\prod_{i=1}^{\sim} f\left(z_{i}\right) \\
& =\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z_{i}^{2}} \\
& =\frac{1}{\sqrt{(2 \pi)^{N}}} e^{-\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}+\cdots+z_{N}^{2}\right)} \\
& =\frac{1}{\sqrt{(2 \pi)^{N}}} e^{-\frac{1}{2} \boldsymbol{z}^{\top} \boldsymbol{z}}
\end{aligned}
$$

Moment Matching

How can we generalize to arbitrary Σ ?
Moment match!

$$
\begin{aligned}
\boldsymbol{z} & \sim \mathcal{N}\left(\mathbf{0}, I_{N}\right) \\
\boldsymbol{x} & =L \boldsymbol{z}+\boldsymbol{\mu} \\
\mathrm{E}[\boldsymbol{x}] & =\mathrm{E}[L \boldsymbol{z}+\boldsymbol{\mu}]=L \mathrm{E}[\boldsymbol{z}]+\boldsymbol{\mu}=\boldsymbol{\mu} \\
\operatorname{Cov}[\boldsymbol{x}] & =\mathrm{E}\left[(\boldsymbol{x}-\mathrm{E}[\boldsymbol{x}])(\boldsymbol{x}-\mathrm{E}[\boldsymbol{x}])^{\top}\right] \\
& =\mathrm{E}\left[L \boldsymbol{z}(L \boldsymbol{z})^{\top}\right] \\
& =\mathrm{E}\left[L \boldsymbol{z} \boldsymbol{z}^{\top} L^{\top}\right] \\
& =L \mathrm{E}\left[\boldsymbol{z} \boldsymbol{z}^{\top}\right] L^{\top} \\
& =L L^{\top}
\end{aligned}
$$

so $\boldsymbol{x} \sim \mathcal{N}\left(\boldsymbol{\mu}, L L^{\top}\right)$. We want $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$, so $\Sigma=L L^{\top}$

Moment Matching

How can we generalize to arbitrary Σ ?
Moment match!

$$
\begin{aligned}
\boldsymbol{z} & \sim \mathcal{N}\left(\mathbf{0}, I_{N}\right) \\
\boldsymbol{x} & =L \boldsymbol{z}+\boldsymbol{\mu} \\
\mathrm{E}[\boldsymbol{x}] & =\mathrm{E}[L \boldsymbol{z}+\boldsymbol{\mu}]=L \mathrm{E}[\boldsymbol{z}]+\boldsymbol{\mu}=\boldsymbol{\mu} \\
\operatorname{Cov}[\boldsymbol{x}] & =\mathrm{E}\left[(\boldsymbol{x}-\mathrm{E}[\boldsymbol{x}])(\boldsymbol{x}-\mathrm{E}[\boldsymbol{x}])^{\top}\right] \\
& =\mathrm{E}\left[L \boldsymbol{z}(L \boldsymbol{z})^{\top}\right] \\
& =\mathrm{E}\left[L \boldsymbol{z} \boldsymbol{z}^{\top} L^{\top}\right] \\
& =L \mathrm{E}\left[\boldsymbol{z} \boldsymbol{z}^{\top}\right] L^{\top} \\
& =L L^{\top}
\end{aligned}
$$

so $\boldsymbol{x} \sim \mathcal{N}\left(\boldsymbol{\mu}, L L^{\top}\right)$. We want $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$, so $\Sigma=L L^{\top}$

Sampling with Cholesky Factorization

As we just saw, we can sample $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ by instead sampling $\boldsymbol{z} \sim \mathcal{N}\left(\mathbf{0}, I_{N}\right)$ and computing $\boldsymbol{x}=L \boldsymbol{z}+\boldsymbol{\mu}$.

Sampling with Cholesky Factorization

As we just saw, we can sample $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ by instead sampling $\boldsymbol{z} \sim \mathcal{N}\left(\mathbf{0}, I_{N}\right)$ and computing $\boldsymbol{x}=L \boldsymbol{z}+\boldsymbol{\mu}$.

Since $L L^{\top}=\Sigma$, a natural pick is $L=\operatorname{chol}(\Sigma)$.

Sampling with Cholesky Factorization

As we just saw, we can sample $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ by instead sampling $\boldsymbol{z} \sim \mathcal{N}\left(\mathbf{0}, I_{N}\right)$ and computing $\boldsymbol{x}=L \boldsymbol{z}+\boldsymbol{\mu}$.

Since $L L^{\top}=\Sigma$, a natural pick is $L=\operatorname{chol}(\Sigma)$.
Why is Σ s.p.d.? Because it's a covariance/Gram matrix!

$$
\begin{aligned}
\Sigma & =\mathrm{E}\left[(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\right] \\
\boldsymbol{y}^{\top} \Sigma \boldsymbol{y} & =\boldsymbol{y}^{\top} \mathrm{E}\left[(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\right] \boldsymbol{y} \\
& =\mathrm{E}\left[\boldsymbol{y}^{\top}(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{y}\right] \\
& =\mathrm{E}\left[\left((\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{y}\right)^{\top}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{y}\right] \\
& =\mathrm{E}\left[\left\|(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{y}\right\|^{2}\right] \geq 0
\end{aligned}
$$

Sampling with Cholesky Factorization

As we just saw, we can sample $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ by instead sampling $\boldsymbol{z} \sim \mathcal{N}\left(\mathbf{0}, I_{N}\right)$ and computing $\boldsymbol{x}=L \boldsymbol{z}+\boldsymbol{\mu}$.

Since $L L^{\top}=\Sigma$, a natural pick is $L=\operatorname{chol}(\Sigma)$.
Why is Σ s.p.d.? Because it's a covariance/Gram matrix!

$$
\begin{aligned}
\Sigma & =\mathrm{E}\left[(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\right] \\
\boldsymbol{y}^{\top} \Sigma \boldsymbol{y} & =\boldsymbol{y}^{\top} \mathrm{E}\left[(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\right] \boldsymbol{y} \\
& =\mathrm{E}\left[\boldsymbol{y}^{\top}(\boldsymbol{x}-\boldsymbol{\mu})(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{y}\right] \\
& =\mathrm{E}\left[\left((\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{y}\right)^{\top}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{y}\right] \\
& =\mathrm{E}\left[\left\|(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{y}\right\|^{2}\right] \geq 0
\end{aligned}
$$

Probability Density Function from Sampling

What's the probability density function $f(\boldsymbol{x})$?

Probability Density Function from Sampling

What's the probability density function $f(\boldsymbol{x})$?
Idea: view \boldsymbol{x} resulting from a invertible transformation from \boldsymbol{z}.

Probability Density Function from Sampling

What's the probability density function $f(\boldsymbol{x})$?
Idea: view \boldsymbol{x} resulting from a invertible transformation from \boldsymbol{z}.

We know $f(\boldsymbol{z})$, so $f(\boldsymbol{x})$ should be similar!

Probability Density Function from Sampling

What's the probability density function $f(\boldsymbol{x})$?
Idea: view \boldsymbol{x} resulting from a invertible transformation from \boldsymbol{z}.
We know $f(\boldsymbol{z})$, so $f(\boldsymbol{x})$ should be similar!
In scalars:

$$
\begin{aligned}
& z \sim \mathcal{N}(0,1) \\
& x=\sigma z+\mu \\
& x \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \\
& z=\frac{x-\mu}{\sigma}
\end{aligned}
$$

PDF from Sampling - Scalar Edition

Since $f(z)$ is a valid probability density function,

$$
1=\int_{-\infty}^{\infty} f(z) \mathrm{d} z=\int_{-\infty}^{\infty} f(z) \frac{\mathrm{d} z}{\mathrm{~d} x} \mathrm{~d} x
$$

We now perform the change of variables $z=\frac{x-\mu}{\sigma}$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} \underbrace{f\left(\frac{x-\mu}{\sigma}\right) \frac{1}{\sigma}}_{\text {PDF of } x} \mathrm{~d} x \\
f(z) & =\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}} \\
\frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right) & =\frac{1}{\sigma} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}}
\end{aligned}
$$

PDF from Sampling - Vector Edition

$$
\begin{aligned}
& \boldsymbol{x}=L \boldsymbol{z}+\boldsymbol{\mu} \\
& \boldsymbol{z}=L^{-1}(\boldsymbol{x}-\boldsymbol{\mu})
\end{aligned}
$$

Since $f(\boldsymbol{z})$ is a valid probability density function,

$$
\begin{aligned}
1 & =\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(\boldsymbol{z}) \mathrm{d} \boldsymbol{z} \\
& =\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(\boldsymbol{z}) \frac{\mathrm{d} \boldsymbol{z}}{\mathrm{~d} \boldsymbol{x}} \mathrm{~d} \boldsymbol{x} \\
& =\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(\boldsymbol{z})\left|\operatorname{det}\left(J_{\boldsymbol{z}}\right)\right| \mathrm{d} \boldsymbol{x} \\
& =\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \underbrace{f\left(L^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right) \operatorname{det}\left(L^{-1}\right)}_{\text {PDF of } \boldsymbol{x}} \mathrm{d} \boldsymbol{x}
\end{aligned}
$$

(informal)
(formal)

PDF from Sampling - Vector Edition

$$
f(\boldsymbol{z})=\frac{1}{\sqrt{(2 \pi)^{N}}} e^{-\frac{1}{2} \boldsymbol{z}^{\top} \boldsymbol{z}}
$$

Expanding $\operatorname{det}\left(L^{-1}\right) f\left(L^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)$,

$$
\begin{aligned}
& =\frac{1}{\operatorname{det}(L)} f\left(L^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right) \\
& =\frac{1}{\operatorname{det}(L)} \frac{1}{\sqrt{(2 \pi)^{N}}} e^{-\frac{1}{2}\left(L^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)^{\top}\left(L^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)}
\end{aligned}
$$

Since $L L^{\top}=\Sigma$, $\operatorname{det}(\Sigma)=\operatorname{det}(L)^{2}$

$$
\begin{aligned}
& =\frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det}(\Sigma)}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} L^{-T} L^{-1}(\boldsymbol{x}-\boldsymbol{\mu})} \\
& =\frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det}(\Sigma)}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}
\end{aligned}
$$

PDF from Sampling - Vector Edition

$$
f(\boldsymbol{z})=\frac{1}{\sqrt{(2 \pi)^{N}}} e^{-\frac{1}{2} z^{\top} \boldsymbol{z}}
$$

Expanding $\operatorname{det}\left(L^{-1}\right) f\left(L^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)$,

$$
\begin{aligned}
& =\frac{1}{\operatorname{det}(L)} f\left(L^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right) \\
& =\frac{1}{\operatorname{det}(L)} \frac{1}{\sqrt{(2 \pi)^{N}}} e^{-\frac{1}{2}\left(L^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)^{\top}\left(L^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)}
\end{aligned}
$$

Since $L L^{\top}=\Sigma$, $\operatorname{det}(\Sigma)=\operatorname{det}(L)^{2}$

$$
\begin{aligned}
& =\frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det}(\Sigma)}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} L^{-T} L^{-1}(\boldsymbol{x}-\boldsymbol{\mu})} \\
& =\frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det}(\Sigma)}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}
\end{aligned}
$$

Summary

Compare PDFs of multivariate normal and scalar normal:

$$
\begin{aligned}
\boldsymbol{x} & \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma) \\
f(\boldsymbol{x}) & =\frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det}(\Sigma)}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}
\end{aligned}
$$

Compare to scalar:

$$
\begin{aligned}
x & \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \\
f(x) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}}
\end{aligned}
$$

Summary

Compare PDFs of multivariate normal and scalar normal:

$$
\begin{aligned}
\boldsymbol{x} & \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma) \\
f(\boldsymbol{x}) & =\frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det}(\Sigma)}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}
\end{aligned}
$$

Compare to scalar:

$$
\begin{aligned}
x & \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \\
f(x) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}}
\end{aligned}
$$

Remarkable similarity!

Cholesky Factorization for Gaussians

Sampling: $\boldsymbol{x}=L \boldsymbol{z}+\mu$, matrix-vector product, $\mathcal{O}(N s)$

Density computation:

$$
\begin{aligned}
(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) & =(\boldsymbol{x}-\boldsymbol{\mu})^{\top} L^{-\top} L^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) \\
& =\left(L^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)^{\top} L^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) \\
& =\left\|L^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\|^{2}
\end{aligned}
$$

Back-substitution, $O(N s)$

Cholesky Factorization for Gaussians

Sampling: $\boldsymbol{x}=L \boldsymbol{z}+\mu$, matrix-vector product, $\mathcal{O}(N s)$

Density computation:

$$
\begin{aligned}
(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) & =(\boldsymbol{x}-\boldsymbol{\mu})^{\top} L^{-\top} L^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) \\
& =\left(L^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)^{\top} L^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) \\
& =\left\|L^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\|^{2}
\end{aligned}
$$

Back-substitution, $O(N s)$

Closure of Multivariate Gaussians

Many statistical operations preserve distribution

Closure of Multivariate Gaussians

Many statistical operations preserve distribution

Affine transformation

Closure of Multivariate Gaussians

Many statistical operations preserve distribution

Affine transformation

Joint distribution \& marginalization:

$$
\begin{aligned}
\boldsymbol{x}_{1} & \sim \mathcal{N}\left(\boldsymbol{\mu}_{1}, \Sigma_{11}\right) \\
\boldsymbol{x}_{2} & \sim \mathcal{N}\left(\boldsymbol{\mu}_{2}, \Sigma_{22}\right) \\
\binom{\boldsymbol{x}_{1}}{\boldsymbol{x}_{2}} & \sim \mathcal{N}\left(\binom{\boldsymbol{\mu}_{1}}{\boldsymbol{\mu}_{2}},\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)\right)
\end{aligned}
$$

Closure of Multivariate Gaussians

Many statistical operations preserve distribution

Affine transformation

Joint distribution \& marginalization:

$$
\begin{aligned}
\boldsymbol{x}_{1} & \sim \mathcal{N}\left(\boldsymbol{\mu}_{1}, \Sigma_{11}\right) \\
\boldsymbol{x}_{2} & \sim \mathcal{N}\left(\boldsymbol{\mu}_{2}, \Sigma_{22}\right) \\
\binom{\boldsymbol{x}_{1}}{\boldsymbol{x}_{2}} & \sim \mathcal{N}\left(\binom{\boldsymbol{\mu}_{1}}{\boldsymbol{\mu}_{2}},\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)\right)
\end{aligned}
$$

Conditioning

Closure of Multivariate Gaussians

Many statistical operations preserve distribution
Affine transformation

Joint distribution \& marginalization:

$$
\begin{aligned}
\boldsymbol{x}_{1} & \sim \mathcal{N}\left(\boldsymbol{\mu}_{1}, \Sigma_{11}\right) \\
\boldsymbol{x}_{2} & \sim \mathcal{N}\left(\boldsymbol{\mu}_{2}, \Sigma_{22}\right) \\
\binom{\boldsymbol{x}_{1}}{\boldsymbol{x}_{2}} & \sim \mathcal{N}\left(\binom{\boldsymbol{\mu}_{1}}{\boldsymbol{\mu}_{2}},\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)\right)
\end{aligned}
$$

Conditioning

Conditioning

Assume $\boldsymbol{\mu}=\mathbf{0}$ and use precision instead of covariance!

$$
\begin{aligned}
Q & =\Sigma^{-1}=\left(\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right) \\
\pi\left(\boldsymbol{x}_{2} \mid \boldsymbol{x}_{1}\right) & =\frac{\pi\left(\boldsymbol{x}_{1} \mid \boldsymbol{x}_{2}\right) \pi\left(\boldsymbol{x}_{2}\right)}{\pi\left(\boldsymbol{x}_{1}\right)}=\frac{\pi\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)}{\pi\left(\boldsymbol{x}_{1}\right)} \\
& \propto \pi\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \\
& \propto e^{-\frac{1}{2} \boldsymbol{x}_{2}^{\top} Q_{22} \boldsymbol{x}_{2}-\left(Q_{21} \boldsymbol{x}_{1}\right)^{\top} \boldsymbol{x}_{2}} \\
\boldsymbol{x}_{2} \mid \boldsymbol{x}_{1} & \sim \mathcal{N}\left(-Q_{22}^{-1} Q_{21} \boldsymbol{x}_{1}, Q_{22}^{-1}\right)
\end{aligned}
$$

If $\boldsymbol{\mu} \neq \mathbf{0}$, shift $\boldsymbol{x}^{*}=\boldsymbol{x}-\boldsymbol{\mu}, \mathrm{E}\left[\boldsymbol{x}^{*}\right]=\mathbf{0}$

$$
\boldsymbol{x}_{2} \mid \boldsymbol{x}_{1} \sim \mathcal{N}\left(\boldsymbol{\mu}_{2}-Q_{22}^{-1} Q_{21}\left(\boldsymbol{x}_{1}-\boldsymbol{\mu}_{1}\right), Q_{22}^{-1}\right)
$$

Conditioning with Schur Complements

$$
\begin{aligned}
\boldsymbol{x}_{2} \mid \boldsymbol{x}_{1} & \sim \mathcal{N}\left(\boldsymbol{\mu}_{2}-Q_{22}^{-1} Q_{21}\left(\boldsymbol{x}_{1}-\boldsymbol{\mu}_{1}\right), Q_{22}^{-1}\right) \\
Q & =\Sigma^{-1}=\left(\begin{array}{cc}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\Sigma_{11}^{-1}+\left(\Sigma_{11}^{-1} \Sigma_{12}\right) \Sigma_{22 \mid 1}^{-1}\left(\Sigma_{21} \Sigma_{11}^{-1}\right) & -\left(\Sigma_{11}^{-1} \Sigma_{12}\right) \Sigma_{22 \mid 1}^{-1} \\
-\Sigma_{22 \mid 1}^{-1}\left(\Sigma_{21} \Sigma_{11}^{-1}\right) & \Sigma_{22 \mid 1}^{-1}
\end{array}\right) \\
Q_{22}^{-1} & =\left(\Sigma_{22 \mid 1}^{-1}\right)^{-1}=\Sigma_{22 \mid 1} \\
& =\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} \\
Q_{22}^{-1} Q_{21} & =-\Sigma_{22 \mid 1}\left(\Sigma_{22 \mid 1}^{-1} \Sigma_{21} \Sigma_{11}^{-1}\right) \\
& =-\Sigma_{21} \Sigma_{11}^{-1} \\
\boldsymbol{x}_{2} \mid \boldsymbol{x}_{1} & \sim \mathcal{N}\left(\boldsymbol{\mu}_{2}+\Sigma_{21} \Sigma_{11}^{-1}\left(\boldsymbol{x}_{1}-\boldsymbol{\mu}_{1}\right), \Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right)
\end{aligned}
$$

Conditioning with Schur Complements

$$
\begin{aligned}
\boldsymbol{x}_{2} \mid \boldsymbol{x}_{1} & \sim \mathcal{N}\left(\boldsymbol{\mu}_{2}-Q_{22}^{-1} Q_{21}\left(\boldsymbol{x}_{1}-\boldsymbol{\mu}_{1}\right), Q_{22}^{-1}\right) \\
Q & =\Sigma^{-1}=\left(\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right) \\
& \left.=\left(\begin{array}{c}
\Sigma_{11}^{-1}+\left(\Sigma_{11}^{-1} \Sigma_{12}\right) \Sigma_{22 \mid 1}^{-1}\left(\Sigma_{21} \Sigma_{11}^{-1}\right) \\
-\Sigma_{22 \mid 1}^{-1}\left(\Sigma_{21} \Sigma_{11}^{-1}\right) \\
Q_{22}^{-1}
\end{array}=\left(\Sigma_{22 \mid 1}^{-1}\right)^{-1}=\Sigma_{22 \mid 1}^{-1} \Sigma_{12}\right) \Sigma_{22 \mid 1}^{-1}\right) \\
& =\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} \\
Q_{22}^{-1} Q_{21} & =-\Sigma_{22 \mid 1}\left(\Sigma_{22 \mid 1}^{-1} \Sigma_{21} \Sigma_{11}^{-1}\right) \\
& =-\Sigma_{21} \Sigma_{11}^{-1} \\
\boldsymbol{x}_{2} \mid \boldsymbol{x}_{1} & \sim \mathcal{N}\left(\boldsymbol{\mu}_{2}+\Sigma_{21} \Sigma_{11}^{-1}\left(\boldsymbol{x}_{1}-\boldsymbol{\mu}_{1}\right), \Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right)
\end{aligned}
$$

Statistical Interpretation

From conditioning,

$$
\boldsymbol{x}_{2} \mid \boldsymbol{x}_{1} \sim \mathcal{N}\left(\mu_{2}+\Sigma_{21} \Sigma_{11}^{-1}\left(\boldsymbol{x}_{1}-\boldsymbol{\mu}_{1}\right), \Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right)
$$

Statistical Interpretation

From conditioning,

$$
\boldsymbol{x}_{2} \mid \boldsymbol{x}_{1} \sim \mathcal{N}\left(\mu_{2}+\Sigma_{21} \Sigma_{11}^{-1}\left(\boldsymbol{x}_{1}-\boldsymbol{\mu}_{1}\right), \Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right)
$$

Schur complement \Longleftrightarrow conditional covariance!

Statistical Interpretation

From conditioning,

$$
\boldsymbol{x}_{2} \mid \boldsymbol{x}_{1} \sim \mathcal{N}\left(\mu_{2}+\Sigma_{21} \Sigma_{11}^{-1}\left(\boldsymbol{x}_{1}-\boldsymbol{\mu}_{1}\right), \Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right)
$$

Schur complement \Longleftrightarrow conditional covariance!
s.p.d. because covariance matrices s.p.d.

Statistical Interpretation

From conditioning,

$$
\boldsymbol{x}_{2} \mid \boldsymbol{x}_{1} \sim \mathcal{N}\left(\mu_{2}+\Sigma_{21} \Sigma_{11}^{-1}\left(\boldsymbol{x}_{1}-\boldsymbol{\mu}_{1}\right), \Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right)
$$

Schur complement \Longleftrightarrow conditional covariance!
s.p.d. because covariance matrices s.p.d.

Quotient rule statistically trivial:
$\pi\left(\left(x_{1} \mid x_{2}\right) \mid x_{3}\right)=\pi\left(x_{1} \mid x_{2}, x_{3}\right)$

Statistical Interpretation

From conditioning,

$$
\boldsymbol{x}_{2} \mid \boldsymbol{x}_{1} \sim \mathcal{N}\left(\mu_{2}+\Sigma_{21} \Sigma_{11}^{-1}\left(\boldsymbol{x}_{1}-\boldsymbol{\mu}_{1}\right), \Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right)
$$

Schur complement \Longleftrightarrow conditional covariance!
s.p.d. because covariance matrices s.p.d.

Quotient rule statistically trivial:
$\pi\left(\left(x_{1} \mid x_{2}\right) \mid x_{3}\right)=\pi\left(x_{1} \mid x_{2}, x_{3}\right)$

Conditioning in covariance \Longleftrightarrow marginalization in precision

Statistical Interpretation

From conditioning,

$$
\boldsymbol{x}_{2} \mid \boldsymbol{x}_{1} \sim \mathcal{N}\left(\mu_{2}+\Sigma_{21} \Sigma_{11}^{-1}\left(\boldsymbol{x}_{1}-\boldsymbol{\mu}_{1}\right), \Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right)
$$

Schur complement \Longleftrightarrow conditional covariance!
s.p.d. because covariance matrices s.p.d.

Quotient rule statistically trivial:
$\pi\left(\left(x_{1} \mid x_{2}\right) \mid x_{3}\right)=\pi\left(x_{1} \mid x_{2}, x_{3}\right)$
Conditioning in covariance \Longleftrightarrow marginalization in precision

Table of Contents

1. High-level Summary
2. Cholesky Factorization
3. Schur Complement
4. Multivariate Gaussians
5. Gaussian Process Regression
6. Sparse Cholesky Factorization

7. References

Gaussian Processes

Probability distribution over vectors

Gaussian Processes

Probability distribution over vectors

Extend to distribution over functions?

Gaussian Processes

Probability distribution over vectors

Extend to distribution over functions?

Idea: for finite set of points, function simply vector

$$
\begin{aligned}
X & =\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\} \\
\boldsymbol{y} & =\left\{f\left(\boldsymbol{x}_{1}\right), f\left(\boldsymbol{x}_{2}\right), \ldots, f\left(\boldsymbol{x}_{N}\right)\right\}
\end{aligned}
$$

Gaussian Processes

Probability distribution over vectors

Extend to distribution over functions?

Idea: for finite set of points, function simply vector

$$
\begin{aligned}
X & =\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\} \\
\boldsymbol{y} & =\left\{f\left(\boldsymbol{x}_{1}\right), f\left(\boldsymbol{x}_{2}\right), \ldots, f\left(\boldsymbol{x}_{N}\right)\right\}
\end{aligned}
$$

Idea: for points we're not given, marginalization is trivial

Gaussian Processes

Probability distribution over vectors

Extend to distribution over functions?

Idea: for finite set of points, function simply vector

$$
\begin{aligned}
X & =\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\} \\
\boldsymbol{y} & =\left\{f\left(\boldsymbol{x}_{1}\right), f\left(\boldsymbol{x}_{2}\right), \ldots, f\left(\boldsymbol{x}_{N}\right)\right\}
\end{aligned}
$$

Idea: for points we're not given, marginalization is trivial

How to assign mean and covariance in a sensible way?

Gaussian Processes

Probability distribution over vectors

Extend to distribution over functions?

Idea: for finite set of points, function simply vector

$$
\begin{aligned}
X & =\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\} \\
\boldsymbol{y} & =\left\{f\left(\boldsymbol{x}_{1}\right), f\left(\boldsymbol{x}_{2}\right), \ldots, f\left(\boldsymbol{x}_{N}\right)\right\}
\end{aligned}
$$

Idea: for points we're not given, marginalization is trivial

How to assign mean and covariance in a sensible way?

Gaussian Process Definition

Let $\mu(\boldsymbol{x})$ be the mean function and $K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ be the covariance function or kernel function

We say

$$
f(\boldsymbol{x}) \sim \mathcal{G} \mathcal{P}\left(\mu(\boldsymbol{x}), K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)\right)
$$

If for all point sets X,

$$
\begin{aligned}
X & =\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N}\right\} \\
\boldsymbol{y} & =\left\{f\left(\boldsymbol{x}_{1}\right), f\left(\boldsymbol{x}_{2}\right), \ldots, f\left(\boldsymbol{x}_{N}\right)\right\} \\
\boldsymbol{y} & \sim \mathcal{N}(\boldsymbol{\mu}, \Theta)
\end{aligned}
$$

where

$$
\begin{aligned}
\boldsymbol{\mu}_{i} & =\mu\left(\boldsymbol{x}_{i}\right) \\
\Theta_{i j} & =K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)
\end{aligned}
$$

Regression with Gaussian Processes

Simply condition prediction points on training points:

$$
\begin{aligned}
\Theta & =\left(\begin{array}{ll}
\Theta_{\operatorname{Tr}, \operatorname{Tr}} & \Theta_{\mathrm{Tr}, \mathrm{Pr}} \\
\Theta_{\mathrm{Pr}, \mathrm{Tr}} & \Theta_{\mathrm{Pr}, \mathrm{Pr}}
\end{array}\right) \\
\mathrm{E}\left[\boldsymbol{y}_{\mathrm{Pr}} \mid \boldsymbol{y}_{\mathrm{Tr}}\right] & =\boldsymbol{\mu}_{\mathrm{Pr}}+\Theta_{\mathrm{Pr}, \mathrm{Tr}} \Theta_{\mathrm{Tr}, \mathrm{Tr}}^{-1}\left(\boldsymbol{y}_{\mathrm{Tr}}-\boldsymbol{\mu}_{\mathrm{Tr}}\right) \\
\operatorname{Cov}\left[\boldsymbol{y}_{\mathrm{Pr}} \mid \boldsymbol{y}_{\mathrm{Tr}}\right] & =\Theta_{\mathrm{Pr}, \mathrm{Pr}}-\Theta_{\mathrm{Pr}, \mathrm{Tr}} \Theta_{\mathrm{Tr}, \mathrm{Tr}}^{-1} \Theta_{\mathrm{Tr}, \mathrm{Pr}}
\end{aligned}
$$

Regression with Gaussian Processes

Simply condition prediction points on training points:

$$
\begin{aligned}
\Theta & =\left(\begin{array}{ll}
\Theta_{\mathrm{Tr}, \mathrm{Tr}} & \Theta_{\mathrm{Tr}, \mathrm{Pr}} \\
\Theta_{\mathrm{Pr}, \mathrm{Tr}} & \Theta_{\mathrm{Pr}, \mathrm{Pr}}
\end{array}\right) \\
\mathrm{E}\left[\boldsymbol{y}_{\mathrm{Pr}} \mid \boldsymbol{y}_{\mathrm{Tr}}\right] & =\boldsymbol{\mu}_{\mathrm{Pr}}+\Theta_{\mathrm{Pr}, \mathrm{Tr}} \Theta_{\mathrm{Tr}, \mathrm{Tr}}^{-1}\left(\boldsymbol{y}_{\mathrm{Tr}}-\boldsymbol{\mu}_{\mathrm{Tr}}\right) \\
\operatorname{Cov}\left[\boldsymbol{y}_{\mathrm{Pr}} \mid \boldsymbol{y}_{\mathrm{Tr}}\right] & =\Theta_{\mathrm{Pr}, \mathrm{Pr}}-\Theta_{\mathrm{Pr}, \mathrm{Tr}} \Theta_{\mathrm{Tr}, \mathrm{Tr}}^{-1} \Theta_{\mathrm{Tr}, \mathrm{Pr}}
\end{aligned}
$$

Nonparametric! No training! Uncertainty quantification!

Regression with Gaussian Processes

Simply condition prediction points on training points:

$$
\begin{aligned}
\Theta & =\left(\begin{array}{ll}
\Theta_{\mathrm{Tr}, \mathrm{Tr}} & \Theta_{\mathrm{Tr}, \mathrm{Pr}} \\
\Theta_{\mathrm{Pr}, \mathrm{Tr}} & \Theta_{\mathrm{Pr}, \mathrm{Pr}}
\end{array}\right) \\
\mathrm{E}\left[\boldsymbol{y}_{\mathrm{Pr}} \mid \boldsymbol{y}_{\mathrm{Tr}}\right] & =\boldsymbol{\mu}_{\mathrm{Pr}}+\Theta_{\mathrm{Pr}, \mathrm{Tr}} \Theta_{\mathrm{Tr}, \mathrm{Tr}}^{-1}\left(\boldsymbol{y}_{\mathrm{Tr}}-\boldsymbol{\mu}_{\mathrm{Tr}}\right) \\
\operatorname{Cov}\left[\boldsymbol{y}_{\mathrm{Pr}} \mid \boldsymbol{y}_{\mathrm{Tr}}\right] & =\Theta_{\mathrm{Pr}, \mathrm{Pr}}-\Theta_{\mathrm{Pr}, \mathrm{Tr}} \Theta_{\mathrm{Tr}, \mathrm{Tr}}^{-1} \Theta_{\mathrm{Tr}, \mathrm{Pr}}
\end{aligned}
$$

Nonparametric! No training! Uncertainty quantification!
$\ldots \mathcal{O}\left(N^{3}\right)$ to compute $\Theta_{\mathrm{Tr}, \mathrm{Tr}}^{-1}$

Regression with Gaussian Processes

Simply condition prediction points on training points:

$$
\begin{aligned}
\Theta & =\left(\begin{array}{ll}
\Theta_{\mathrm{Tr}, \mathrm{Tr}} & \Theta_{\mathrm{Tr}, \mathrm{Pr}} \\
\Theta_{\mathrm{Pr}, \mathrm{Tr}} & \Theta_{\mathrm{Pr}, \mathrm{Pr}}
\end{array}\right) \\
\mathrm{E}\left[\boldsymbol{y}_{\mathrm{Pr}} \mid \boldsymbol{y}_{\mathrm{Tr}}\right] & =\boldsymbol{\mu}_{\mathrm{Pr}}+\Theta_{\mathrm{Pr}, \mathrm{Tr}} \Theta_{\mathrm{Tr}, \mathrm{Tr}}^{-1}\left(\boldsymbol{y}_{\mathrm{Tr}}-\boldsymbol{\mu}_{\mathrm{Tr}}\right) \\
\operatorname{Cov}\left[\boldsymbol{y}_{\mathrm{Pr}} \mid \boldsymbol{y}_{\mathrm{Tr}}\right] & =\Theta_{\mathrm{Pr}, \mathrm{Pr}}-\Theta_{\mathrm{Pr}, \mathrm{Tr}} \Theta_{\mathrm{Tr}, \mathrm{Tr}}^{-1} \Theta_{\mathrm{Tr}, \mathrm{Pr}}
\end{aligned}
$$

Nonparametric! No training! Uncertainty quantification!
... $\mathcal{O}\left(N^{3}\right)$ to compute $\Theta_{\mathrm{Tr}, \mathrm{Tr}}^{-1}$
And we're back to the starting problem

Screening Effect

Figure: Conditional on nearby points, far away points have less covariance

Table of Contents

1. High-level Summary
2. Cholesky Factorization
3. Schur Complement
4. Multivariate Gaussians
5. Gaussian Process Regression
6. Sparse Cholesky Factorization

7. References

Cholesky Factorization by KL Minimization

Measure approximation error by KL divergence:

$$
L:=\underset{\hat{L} \in S}{\operatorname{argmin}} \mathbb{D}_{\mathrm{KL}}\left(\mathcal{N}(\mathbf{0}, \Theta) \| \mathcal{N}\left(\mathbf{0},\left(\hat{L} \hat{L}^{\top}\right)^{-1}\right)\right)
$$

Cholesky Factorization by KL Minimization

Measure approximation error by KL divergence:

$$
L:=\underset{\hat{L} \in S}{\operatorname{argmin}} \mathbb{D}_{\mathrm{KL}}\left(\mathcal{N}(\mathbf{0}, \Theta) \| \mathcal{N}\left(\mathbf{0},\left(\hat{L} \hat{L}^{\top}\right)^{-1}\right)\right)
$$

Re-write KL divergence:

$$
\begin{aligned}
& 2 \mathbb{D}_{\mathrm{KL}}\left(\mathcal{N}\left(\mathbf{0}, \Theta_{1}\right) \| \mathcal{N}\left(\mathbf{0}, \Theta_{2}\right)\right)= \\
& \operatorname{trace}\left(\Theta_{2}^{-1} \Theta_{1}\right)+\log \operatorname{det}\left(\Theta_{2}\right)-\log \operatorname{det}\left(\Theta_{1}\right)-N
\end{aligned}
$$

where Θ_{1} and Θ_{2} are both of size $N \times N$

Cholesky Factorization by KL Minimization

Measure approximation error by KL divergence:

$$
L:=\underset{\tilde{L} \in S}{\operatorname{argmin}} \mathbb{D}_{\mathrm{KL}}\left(\mathcal{N}(\mathbf{0}, \Theta) \| \mathcal{N}\left(\mathbf{0},\left(\hat{L} \hat{L}^{\top}\right)^{-1}\right)\right)
$$

Re-write KL divergence:

$$
\begin{aligned}
& 2 \mathbb{D}_{\mathrm{KL}}\left(\mathcal{N}\left(\mathbf{0}, \Theta_{1}\right) \| \mathcal{N}\left(\mathbf{0}, \Theta_{2}\right)\right)= \\
& \operatorname{trace}\left(\Theta_{2}^{-1} \Theta_{1}\right)+\operatorname{logdet}\left(\Theta_{2}\right)-\operatorname{logdet} \\
& \Theta_{1} \text { and } \Theta_{2} \text { are both of size } N \times N
\end{aligned}
$$

Cholesky Factorization as GP Regression

Theorem
[1]. The non-zero entries of the ith column of L are:

$$
L_{s_{i}, i}=\frac{\Theta_{s_{i}, s_{i}}^{-1} \boldsymbol{e}_{1}}{\sqrt{\boldsymbol{e}_{1}^{\top} \Theta_{s_{i}, s_{i}}^{-1} \boldsymbol{e}_{1}}}
$$

Cholesky Factorization as GP Regression

Theorem

[1]. The non-zero entries of the ith column of L are:

$$
L_{s_{i}, i}=\frac{\Theta_{s_{i}, s_{i}}^{-1} \boldsymbol{e}_{1}}{\sqrt{\boldsymbol{e}_{1}^{\top} \Theta_{s_{i}, s_{i}}^{-1} \boldsymbol{e}_{1}}}
$$

Plugging the optimal L back into the KL divergence, we obtain:

$$
\sum_{i=1}^{N}\left[\log \left(\left(\boldsymbol{e}_{1}^{\top} \Theta_{s_{i}, s_{i}}^{-1} \boldsymbol{e}_{1}\right)^{-1}\right)\right]-\log \operatorname{det}(\Theta)
$$

Cholesky Factorization as GP Regression

Theorem

[1]. The non-zero entries of the ith column of L are:

$$
L_{s_{i}, i}=\frac{\Theta_{s_{i}, s_{i}}^{-1} \boldsymbol{e}_{1}}{\sqrt{\boldsymbol{e}_{1}^{\top} \Theta_{s_{i}, s_{i}}^{-1} \boldsymbol{e}_{1}}}
$$

Plugging the optimal L back into the KL divergence, we obtain:

$$
\sum_{i=1}^{N}\left[\log \left(\left(\boldsymbol{e}_{1}^{\top} \Theta_{s_{i}, s_{i}}^{-1} \boldsymbol{e}_{1}\right)^{-1}\right)\right]-\operatorname{logdet}(\Theta)
$$

But marginalization in covariance is conditioning in precision!

$$
\left(\boldsymbol{e}_{1}^{\top} \Theta_{s_{i}, s_{i}}^{-1} \boldsymbol{e}_{1}\right)^{-1}=\Theta_{i i \mid s_{i}-\{i\}}
$$

Cholesky Factorization as GP Regression

Theorem

[1]. The non-zero entries of the i th column of L

$$
L_{s_{i}, i}=\frac{\Theta_{s_{i}, s_{i}}^{-1} \boldsymbol{e}_{1}}{\sqrt{\boldsymbol{e}_{1}^{\top} \Theta_{s_{i}, s_{i}}^{-1} \boldsymbol{e}_{1}}}
$$

Plugging the optimal L back into the KL d

$$
\sum_{i=1}^{N}\left[\log \left(\left(\boldsymbol{e}_{1}^{\top} \Theta_{s_{i}, s_{i}}^{-1} \boldsymbol{e}_{1}\right)^{-1}\right)\right]
$$

But marginalization in covariance is conditioning in precision!

$$
\left(\boldsymbol{e}_{1}^{\top} \Theta_{s_{i}, s_{i}}^{-1} \boldsymbol{e}_{1}\right)^{-1}=\Theta_{i i \mid s_{i}-\{i\}}
$$

This is precisely sparse Gaussian process regression!

Table of Contents

1. High-level Summary
2. Cholesky Factorization
3. Schur Complement
4. Multivariate Gaussians
5. Gaussian Process Regression
6. Sparse Cholesky Factorization

7. References

References

[1] F. Schäfer, M. Katzfuss, and H. Owhadi, "Sparse Cholesky factorization by Kullback-Leibler minimization," arXiv preprint arXiv:2004.14455, 2020.

Thank You!

Thank You!

