
Sparse Cholesky Factorization by
Greedy Conditional Selection

Stephen Huan

Theory Club

February 28, 2022



Table of Contents

1. High-level Summary

2. Cholesky Factorization

3. Schur Complement

4. Multivariate Gaussians

5. Gaussian Process Regression

6. Sparse Cholesky Factorization

7. References



The Problem: Gaussian Process Regression

Measurements yTr at N points XTr

Estimate unseen data yPr at XPr

Model as Gaussian process
→ condition on yTr

Computational cost scales as N3

Choose k most informative points!
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Maximize mutual information!

Direct computation: O(Nk4)
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LU Decomposition
... and its symmetric counterpart

M = LU where L is lower triangular and U is upper triangular

Not always possible, need PLU in general!

Special case for (square) symmetric matrices:

Theorem
If M = M⊤ and det(M) ̸= 0, then M = LDLT where L is from
the LU decomposition of M and D is the diagonal of U .

Proof sketch.
(MATH3406 Fall 2021, Prof. Wing Li) Let M = LDK. Just do
matrix multiplication on M = M⊤ =⇒ (LDK) = (LDK)T .
From matrix multiplication, able to see K = L⊤.
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Cholesky Factorization

Let M be (symmetric) positive definite.

Then M = LDL⊤ becomes LL⊤:

M = LDL⊤

= LD
1
2D

1
2L⊤

= LD
1
2 (LD

1
2 )⊤

= L′L′⊤

This is the Cholesky factorization!
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Why Do We Care?
Θ = LL⊤, L has N columns, s non-zero entries per column

Lv and L−1v both cost O(Ns)

Matrix-vector product Θv → L(L⊤v)

N2 → Ns

Solving linear system Θ−1v → L−⊤(L−1v)

N3 → Ns

Log determinant logdetΘ → 2 logdetL = 2
∑N

i=1 logLii

N3 → N

Sampling from x ∼ N (µ,Θ) → z ∼ N (0, I),x = Lz + µ

??? → Ns
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Computing the Cholesky Factorization
Down-looking

Like LU

Gaussian elimination downwards

1 def down_cholesky(theta: np.ndarray) -> np.ndarray:
2 M, n = np.copy(theta), len(theta)
3 L = np.identity(n)
4 for i in range(n):
5 for j in range(i + 1, n):
6 L[j, i] = M[j, i]/M[i, i]
7 # zero out everything below
8 M[j] -= L[j, i]*M[i]
9 # update L

10 L[:, i] *= np.sqrt(M[i, i])
11 return L



Computing the Cholesky Factorization
Down-looking

Like LU

Gaussian elimination downwards

1 def down_cholesky(theta: np.ndarray) -> np.ndarray:
2 M, n = np.copy(theta), len(theta)
3 L = np.identity(n)
4 for i in range(n):
5 for j in range(i + 1, n):
6 L[j, i] = M[j, i]/M[i, i]
7 # zero out everything below
8 M[j] -= L[j, i]*M[i]
9 # update L

10 L[:, i] *= np.sqrt(M[i, i])
11 return L



Computing the Cholesky Factorization
Up-looking

Let L′ be blocked according to:

L′ =

(
L 0
r⊤ d

)
L′L′⊤ =

(
L 0
r⊤ d

)(
L⊤ r
0⊤ d

)
=

(
LL⊤ Lr
r⊤L⊤ r⊤r + d2

)
So if we have a Cholesky factor for a principle submatrix of Θ, we
can extend it inductively by reading off the appropiate data!(

LL⊤ Lr
r⊤L⊤ r⊤r + d2

)
=

(
Θ c
c⊤ C

)
r = L−1c

d =
√

C − r⊤r
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Computing the Cholesky Factorization
Up-looking

1 def Lsolve(L: np.ndarray, y: np.ndarray) -> np.ndarray:
2 """ Solves Lx = y for lower triangular L. """
3 n = len(y)
4 x = np.zeros(n)
5 for i in range(n):
6 x[i] = (y[i] - L[i, :i].dot(x[:i]))/L[i, i]
7 return x
8

9 def up_cholesky(theta: np.ndarray) -> np.ndarray:
10 n = len(theta)
11 L = np.zeros((n, n))
12 for i in range(n):
13 row = Lsolve(L, theta[:i, i])
14 L[i, :i] = row
15 L[i, i] = np.sqrt(theta[i, i] - row.dot(row))
16 return L
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l1 l2 · · · lN
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(
l1 l2 · · · lN

)

l⊤1
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...
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= l1l

⊤
1 + l2l

⊤
2 + · · ·+ lN l⊤N = Θ

From lower triangularity, nested submatrices!
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Computing the Cholesky Factorization
Right-looking
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Schur Complement
or recursive Cholesky factorization

Block Θ as follows:

Θ =

(
Θ11 Θ12

Θ21 Θ22

)
Then proceed by one step of Gaussian elimination:(

Θ11 Θ12

0 Θ22 −Θ21Θ
−1
11 Θ12

)
Thus,

=

(
I 0

Θ21Θ
−1
11 I

)(
Θ11 0

0 Θ22 −Θ21Θ
−1
11 Θ12

)(
I Θ−1

11 Θ12

0 I

)
so we see the Cholesky factorization of Θ is(

I 0

Θ21Θ
−1
11 I

)(
chol(Θ11) 0

0 chol(Θ22 −Θ21Θ
−1
11 Θ12)

)
The term in blue is the Schur complement of Θ on Θ11
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Proper Determinant of Block Matrix

Θ =

(
Θ11 Θ12

Θ21 Θ22

)
det(Θ) = ?

= det(Θ11) det(Θ22)− det(Θ21) det(Θ12)? wrong!
= det(Θ11Θ22 −Θ21Θ12)? wrong!

Schur complement gives proper answer:

Θ =

(
I 0

Θ21Θ
−1
11 I

)(
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)(
I Θ−1
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−1
11 Θ12)
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Proper Submatrix of Inverse

Θ =

(
Θ11 Θ12

Θ21 Θ22

)
(Θ−1)22 = ?

= (Θ22)
−1? wrong!

Schur complement to the rescue again!
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A Few Important Questions...
Is the Schur complement symmetric positive definite (s.p.d.)?

If it isn’t, we’re kinda screwed — have been assuming so

Is Schur complementing transitive?

i.e. suppose we have Θ blocked as

Θ =

Θ11 Θ12 Θ13

Θ21 Θ22 Θ23

Θ31 Θ32 Θ33


Is Θ complemented on Θ11 and then on Θ22 the same as

Θ complemented on
(
Θ11 Θ12

Θ21 Θ22

)
?

Intuitively, it should be, but tedious to prove

New perspective which changes everything!
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The Multivariate Gaussian

Recall: Gaussian (or normal) distribution:

x ∼ N (µ, σ2)

f(x) =
1√
2πσ2

e−
1
2

(x−µ)2

σ2

Important (defining?) property: completely determined by
mean and variance, all higher-order cumulants zero.

We’re going to extend this to higher dimensions. Consider

x ∼ N (µ,Σ)

where x (“variables”) is a N × 1 vector, µ (“mean vector”) is a
N × 1 vector, and Σ (“covariance matrix”) is a N ×N matrix
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Defining Everything

Naturally,

µi = E[xi]

µ = E[x]

Σij = Cov[xi, xj ]

= E[(xi − E[xi])(xj − E[xj ])]

= E[(x− µ)(x− µ)⊤]

Two natural (and fundamental) questions from here:
1. What is the probability density function f(x)?
2. How can we sample from x ∼ N (µ,Σ)?

Surprisingly enough, Cholesky factorization answers both!
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Independent Variables

Gaussian has the (unique?) property if Σij = 0, then xi and
xj are statistically independent. This is not true in general!

Key property we will make heavy use of: moment matching. If
we know µ and Σ, distribution is determined.

Consider: if xi and xj were independent, then Σij = 0. So
suppose xi and xj are not independent but Σij = 0. It’s the
same Σ as when they were independent. So xi and xj must be
distributed like they’re independent. By contradiction, they
must have been independent in the first place!
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Completely Independent Variables

Well, if Σ has particular structure, it’s actually trivial:
z ∼ N (0, IN )

zi
i.i.d.∼ N (0, 1)

f(z) =

N∏
i=1

f(zi)

=

N∏
i=1

1√
2π

e−
1
2
z2i

=
1√

(2π)N
e−

1
2
(z21+z22+···+z2N )

=
1√

(2π)N
e−

1
2
z⊤z
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Moment Matching
How can we generalize to arbitrary Σ?

Moment match!

z ∼ N (0, IN )

x = Lz + µ

E[x] = E[Lz + µ] = LE[z] + µ = µ

Cov[x] = E[(x− E[x])(x− E[x])⊤]

= E[Lz(Lz)⊤]

= E[Lzz⊤L⊤]

= LE[zz⊤]L⊤

= LL⊤

so x ∼ N (µ, LL⊤). We want x ∼ N (µ,Σ), so Σ = LL⊤
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Sampling with Cholesky Factorization

As we just saw, we can sample x ∼ N (µ,Σ) by instead
sampling z ∼ N (0, IN ) and computing x = Lz + µ.

Since LL⊤ = Σ, a natural pick is L = chol(Σ).

Why is Σ s.p.d.? Because it’s a covariance/Gram matrix!

Σ = E[(x− µ)(x− µ)⊤]

y⊤Σy = y⊤ E[(x− µ)(x− µ)⊤]y

= E[y⊤(x− µ)(x− µ)⊤y]

= E[((x− µ)⊤y)⊤(x− µ)⊤y]

= E[∥(x− µ)⊤y∥2] ≥ 0
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Probability Density Function from Sampling

What’s the probability density function f(x)?

Idea: view x resulting from a invertible transformation from z.

We know f(z), so f(x) should be similar!

In scalars:

z ∼ N (0, 1)

x = σz + µ

x ∼ N (µ, σ2)

z =
x− µ

σ
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PDF from Sampling — Scalar Edition

Since f(z) is a valid probability density function,

1 =

∫ ∞

−∞
f(z) dz =

∫ ∞

−∞
f(z)

dz

dx
dx

We now perform the change of variables z = x−µ
σ

=

∫ ∞

−∞
f

(
x− µ

σ

)
1

σ︸ ︷︷ ︸
PDF of x

dx

f(z) =
1√
2π

e−
1
2
z2

1

σ
f

(
x− µ

σ

)
=

1

σ

1√
2π

e−
1
2(

x−µ
σ )

2

=
1√
2πσ2

e−
1
2

(x−µ)2

σ2



PDF from Sampling — Vector Edition

x = Lz + µ

z = L−1(x− µ)

Since f(z) is a valid probability density function,

1 =

∫ ∞

−∞
· · ·
∫ ∞

−∞
f(z) dz

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
f(z)

dz

dx
dx (informal)

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
f(z)|det(Jz)| dx (formal)

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
f(L−1(x− µ)) det(L−1)︸ ︷︷ ︸

PDF of x

dx



PDF from Sampling — Vector Edition

f(z) =
1√

(2π)N
e−

1
2
z⊤z

Expanding det(L−1)f(L−1(x− µ)),

=
1

det(L)
f(L−1(x− µ))

=
1

det(L)

1√
(2π)N

e−
1
2
(L−1(x−µ))⊤(L−1(x−µ))

Since LL⊤ = Σ, det(Σ) = det(L)2

=
1√

(2π)N det(Σ)
e−

1
2
(x−µ)⊤L−TL−1(x−µ)

=
1√

(2π)N det(Σ)
e−

1
2
(x−µ)⊤Σ−1(x−µ)



PDF from Sampling — Vector Edition
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Summary

Compare PDFs of multivariate normal and scalar normal:

x ∼ N (µ,Σ)

f(x) =
1√

(2π)N det(Σ)
e−

1
2
(x−µ)⊤Σ−1(x−µ)

Compare to scalar:
x ∼ N (µ, σ2)

f(x) =
1√
2πσ2

e−
1
2

(x−µ)2

σ2

Remarkable similarity!
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Cholesky Factorization for Gaussians

Sampling: x = Lz + µ, matrix-vector product, O(Ns)

Density computation:

(x− µ)⊤Σ−1(x− µ) = (x− µ)⊤L−⊤L−1(x− µ)

= (L−1(x− µ))⊤L−1(x− µ)

= ∥L−1(x− µ)∥2

Back-substitution, O(Ns)
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Closure of Multivariate Gaussians

Many statistical operations preserve distribution

Affine transformation

Joint distribution & marginalization:

x1 ∼ N (µ1,Σ11)

x2 ∼ N (µ2,Σ22)(
x1

x2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
Conditioning
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Conditioning

Assume µ = 0 and use precision instead of covariance!

Q = Σ−1 =

(
Q11 Q12

Q21 Q22

)
π(x2 | x1) =

π(x1 | x2)π(x2)

π(x1)
=

π(x1,x2)

π(x1)

∝ π(x1,x2)

∝ e−
1
2
x⊤
2 Q22x2−(Q21x1)⊤x2

x2 | x1 ∼ N
(
−Q−1

22 Q21x1, Q
−1
22

)
If µ ̸= 0, shift x∗ = x− µ, E[x∗] = 0

x2 | x1 ∼ N
(
µ2 −Q−1

22 Q21(x1 − µ1), Q
−1
22

)



Conditioning with Schur Complements

x2 | x1 ∼ N
(
µ2 −Q−1

22 Q21(x1 − µ1), Q
−1
22

)
Q = Σ−1 =

(
Q11 Q12

Q21 Q22

)
=

(
Σ−1
11 +

(
Σ−1
11 Σ12

)
Σ−1
22|1
(
Σ21Σ

−1
11

)
−
(
Σ−1
11 Σ12

)
Σ−1
22|1

−Σ−1
22|1
(
Σ21Σ

−1
11

)
Σ−1
22|1

)
Q−1

22 = (Σ−1
22|1)

−1 = Σ22|1

= Σ22 − Σ21Σ
−1
11 Σ12

Q−1
22 Q21 = −Σ22|1(Σ

−1
22|1Σ21Σ

−1
11 )

= −Σ21Σ
−1
11

x2 | x1 ∼ N
(
µ2 +Σ21Σ

−1
11 (x1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12

)
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Statistical Interpretation

From conditioning,

x2 | x1 ∼ N
(
µ2 +Σ21Σ

−1
11 (x1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12

)

Schur complement ⇐⇒ conditional covariance!

s.p.d. because covariance matrices s.p.d.

Quotient rule statistically trivial:
π((x1 | x2) | x3) = π(x1 | x2, x3)

Conditioning in covariance ⇐⇒ marginalization in precision
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Gaussian Processes

Probability distribution over vectors

Extend to distribution over functions?

Idea: for finite set of points, function simply vector

X = {x1,x2, . . . ,xN}
y = {f(x1), f(x2), . . . , f(xN )}

Idea: for points we’re not given, marginalization is trivial

How to assign mean and covariance in a sensible way?
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Gaussian Process Definition

Let µ(x) be the mean function and
K(x,x′) be the covariance function or kernel function

We say

f(x) ∼ GP(µ(x),K(x,x′))

If for all point sets X,
X = {x1,x2, . . . ,xN}
y = {f(x1), f(x2), . . . , f(xN )}
y ∼ N (µ,Θ)

where
µi = µ(xi)

Θij = K(xi,xj)



Regression with Gaussian Processes

Simply condition prediction points on training points:

Θ =

(
ΘTr,Tr ΘTr,Pr
ΘPr,Tr ΘPr,Pr

)
E[yPr | yTr] = µPr +ΘPr,TrΘ

−1
Tr,Tr(yTr − µTr)

Cov[yPr | yTr] = ΘPr,Pr −ΘPr,TrΘ
−1
Tr,TrΘTr,Pr

Nonparametric! No training! Uncertainty quantification!

... O(N3) to compute Θ−1
Tr,Tr

And we’re back to the starting problem
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Screening Effect

Figure: Conditional on nearby points, far away points have less covariance
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Cholesky Factorization by KL Minimization

Measure approximation error by KL divergence:

L := argmin
L̂∈S

DKL

(
N (0,Θ)

∥∥∥N (0, (L̂L̂⊤)−1)
)

Re-write KL divergence:

2DKL

(
N (0,Θ1)

∥∥∥N (0,Θ2)
)
=

trace(Θ−1
2 Θ1) + logdet(Θ2)− logdet(Θ1)−N

where Θ1 and Θ2 are both of size N ×N
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Cholesky Factorization as GP Regression
Theorem
[1]. The non-zero entries of the ith column of L are:

Lsi,i =
Θ−1

si,sie1√
e⊤1 Θ

−1
si,sie1

Plugging the optimal L back into the KL divergence, we obtain:

N∑
i=1

[
log
(
(e⊤1 Θ

−1
si,sie1)

−1
)]

− logdet(Θ)

But marginalization in covariance is conditioning in precision!

(e⊤1 Θ
−1
si,sie1)

−1 = Θii|si−{i}

This is precisely sparse Gaussian process regression!
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