
Sparse Cholesky Factorization by
Greedy Conditional Selection

Stephen Huan

Theory Club

February 28, 2022

Table of Contents

1. High-level Summary

2. Cholesky Factorization

3. Schur Complement

4. Multivariate Gaussians

5. Gaussian Process Regression

6. Sparse Cholesky Factorization

7. References

The Problem: Gaussian Process Regression

Measurements yTr at N points XTr

Estimate unseen data yPr at XPr

Model as Gaussian process
→ condition on yTr

Computational cost scales as N3

Choose k most informative points!

The Problem: Gaussian Process Regression

Measurements yTr at N points XTr

Estimate unseen data yPr at XPr

Model as Gaussian process
→ condition on yTr

Computational cost scales as N3

Choose k most informative points!

The Problem: Gaussian Process Regression

Measurements yTr at N points XTr

Estimate unseen data yPr at XPr

Model as Gaussian process
→ condition on yTr

Computational cost scales as N3

Choose k most informative points!

The Problem: Gaussian Process Regression

Measurements yTr at N points XTr

Estimate unseen data yPr at XPr

Model as Gaussian process
→ condition on yTr

Computational cost scales as N3

Choose k most informative points!

The Problem: Gaussian Process Regression

Measurements yTr at N points XTr

Estimate unseen data yPr at XPr

Model as Gaussian process
→ condition on yTr

Computational cost scales as N3

Choose k most informative points!

Conditional k-th Nearest Neighbors

Naive: select k closest points

Chooses redundant information

Maximize mutual information!

Direct computation: O(Nk4)

Store Cholesky factor → O(Nk2)!

Conditional k-th Nearest Neighbors

Naive: select k closest points

Chooses redundant information

Maximize mutual information!

Direct computation: O(Nk4)

Store Cholesky factor → O(Nk2)!

Conditional k-th Nearest Neighbors

Naive: select k closest points

Chooses redundant information

Maximize mutual information!

Direct computation: O(Nk4)

Store Cholesky factor → O(Nk2)!

Conditional k-th Nearest Neighbors

Naive: select k closest points

Chooses redundant information

Maximize mutual information!

Direct computation: O(Nk4)

Store Cholesky factor → O(Nk2)!

Conditional k-th Nearest Neighbors

Naive: select k closest points

Chooses redundant information

Maximize mutual information!

Direct computation: O(Nk4)

Store Cholesky factor → O(Nk2)!

Conditional k-th Nearest Neighbors

Naive: select k closest points

Chooses redundant information

Maximize mutual information!

Direct computation: O(Nk4)

Store Cholesky factor → O(Nk2)!

Cholesky Factorization by Selection

Apply column-wise
→ sparse approx. of GP

Maximum mutual information
→ minimum KL divergence

Improves approx. algorithm of 1

Cholesky Factorization by Selection

Apply column-wise
→ sparse approx. of GP

Maximum mutual information
→ minimum KL divergence

Improves approx. algorithm of 1

Cholesky Factorization by Selection

Apply column-wise
→ sparse approx. of GP

Maximum mutual information
→ minimum KL divergence

Improves approx. algorithm of 1

1F. Schäfer, M. Katzfuss, and H. Owhadi, “Sparse Cholesky factorization by
Kullback-Leibler minimization,” arXiv preprint arXiv:2004.14455, 2020

Table of Contents

1. High-level Summary

2. Cholesky Factorization

3. Schur Complement

4. Multivariate Gaussians

5. Gaussian Process Regression

6. Sparse Cholesky Factorization

7. References

LU Decomposition
... and its symmetric counterpart

M = LU where L is lower triangular and U is upper triangular

Not always possible, need PLU in general!

Special case for (square) symmetric matrices:

Theorem
If M = M⊤ and det(M) ̸= 0, then M = LDLT where L is from
the LU decomposition of M and D is the diagonal of U .

Proof sketch.
(MATH3406 Fall 2021, Prof. Wing Li) Let M = LDK. Just do
matrix multiplication on M = M⊤ =⇒ (LDK) = (LDK)T .
From matrix multiplication, able to see K = L⊤.

LU Decomposition
... and its symmetric counterpart

M = LU where L is lower triangular and U is upper triangular

Not always possible, need PLU in general!

Special case for (square) symmetric matrices:

Theorem
If M = M⊤ and det(M) ̸= 0, then M = LDLT where L is from
the LU decomposition of M and D is the diagonal of U .

Proof sketch.
(MATH3406 Fall 2021, Prof. Wing Li) Let M = LDK. Just do
matrix multiplication on M = M⊤ =⇒ (LDK) = (LDK)T .
From matrix multiplication, able to see K = L⊤.

LU Decomposition
... and its symmetric counterpart

M = LU where L is lower triangular and U is upper triangular

Not always possible, need PLU in general!

Special case for (square) symmetric matrices:

Theorem
If M = M⊤ and det(M) ̸= 0, then M = LDLT where L is from
the LU decomposition of M and D is the diagonal of U .

Proof sketch.
(MATH3406 Fall 2021, Prof. Wing Li) Let M = LDK. Just do
matrix multiplication on M = M⊤ =⇒ (LDK) = (LDK)T .
From matrix multiplication, able to see K = L⊤.

LU Decomposition
... and its symmetric counterpart

M = LU where L is lower triangular and U is upper triangular

Not always possible, need PLU in general!

Special case for (square) symmetric matrices:

Theorem
If M = M⊤ and det(M) ̸= 0, then M = LDLT where L is from
the LU decomposition of M and D is the diagonal of U .

Proof sketch.
(MATH3406 Fall 2021, Prof. Wing Li) Let M = LDK. Just do
matrix multiplication on M = M⊤ =⇒ (LDK) = (LDK)T .
From matrix multiplication, able to see K = L⊤.

Cholesky Factorization

Let M be (symmetric) positive definite.

Then M = LDL⊤ becomes LL⊤:

M = LDL⊤

= LD
1
2D

1
2L⊤

= LD
1
2 (LD

1
2)⊤

= L′L′⊤

This is the Cholesky factorization!

Cholesky Factorization

Let M be (symmetric) positive definite.

Then M = LDL⊤ becomes LL⊤:

M = LDL⊤

= LD
1
2D

1
2L⊤

= LD
1
2 (LD

1
2)⊤

= L′L′⊤

This is the Cholesky factorization!

Cholesky Factorization

Let M be (symmetric) positive definite.

Then M = LDL⊤ becomes LL⊤:

M = LDL⊤

= LD
1
2D

1
2L⊤

= LD
1
2 (LD

1
2)⊤

= L′L′⊤

This is the Cholesky factorization!

Why Do We Care?
Θ = LL⊤, L has N columns, s non-zero entries per column

Lv and L−1v both cost O(Ns)

Matrix-vector product Θv → L(L⊤v)

N2 → Ns

Solving linear system Θ−1v → L−⊤(L−1v)

N3 → Ns

Log determinant logdetΘ → 2 logdetL = 2
∑N

i=1 logLii

N3 → N

Sampling from x ∼ N (µ,Θ) → z ∼ N (0, I),x = Lz + µ

??? → Ns

Why Do We Care?
Θ = LL⊤, L has N columns, s non-zero entries per column

Lv and L−1v both cost O(Ns)

Matrix-vector product Θv → L(L⊤v)

N2 → Ns

Solving linear system Θ−1v → L−⊤(L−1v)

N3 → Ns

Log determinant logdetΘ → 2 logdetL = 2
∑N

i=1 logLii

N3 → N

Sampling from x ∼ N (µ,Θ) → z ∼ N (0, I),x = Lz + µ

??? → Ns

Computing the Cholesky Factorization
Down-looking

Like LU

Gaussian elimination downwards

1 def down_cholesky(theta: np.ndarray) -> np.ndarray:
2 M, n = np.copy(theta), len(theta)
3 L = np.identity(n)
4 for i in range(n):
5 for j in range(i + 1, n):
6 L[j, i] = M[j, i]/M[i, i]
7 # zero out everything below
8 M[j] -= L[j, i]*M[i]
9 # update L

10 L[:, i] *= np.sqrt(M[i, i])
11 return L

Computing the Cholesky Factorization
Down-looking

Like LU

Gaussian elimination downwards

1 def down_cholesky(theta: np.ndarray) -> np.ndarray:
2 M, n = np.copy(theta), len(theta)
3 L = np.identity(n)
4 for i in range(n):
5 for j in range(i + 1, n):
6 L[j, i] = M[j, i]/M[i, i]
7 # zero out everything below
8 M[j] -= L[j, i]*M[i]
9 # update L

10 L[:, i] *= np.sqrt(M[i, i])
11 return L

Computing the Cholesky Factorization
Up-looking

Let L′ be blocked according to:

L′ =

(
L 0
r⊤ d

)
L′L′⊤ =

(
L 0
r⊤ d

)(
L⊤ r
0⊤ d

)
=

(
LL⊤ Lr
r⊤L⊤ r⊤r + d2

)
So if we have a Cholesky factor for a principle submatrix of Θ, we
can extend it inductively by reading off the appropiate data!(

LL⊤ Lr
r⊤L⊤ r⊤r + d2

)
=

(
Θ c
c⊤ C

)
r = L−1c

d =
√

C − r⊤r

Computing the Cholesky Factorization
Up-looking

Let L′ be blocked according to:

L′ =

(
L 0
r⊤ d

)
L′L′⊤ =

(
L 0
r⊤ d

)(
L⊤ r
0⊤ d

)
=

(
LL⊤ Lr
r⊤L⊤ r⊤r + d2

)
So if we have a Cholesky factor for a principle submatrix of Θ, we
can extend it inductively by reading off the appropiate data!(

LL⊤ Lr
r⊤L⊤ r⊤r + d2

)
=

(
Θ c
c⊤ C

)
r = L−1c

d =
√

C − r⊤r

Computing the Cholesky Factorization
Up-looking

1 def Lsolve(L: np.ndarray, y: np.ndarray) -> np.ndarray:
2 """ Solves Lx = y for lower triangular L. """
3 n = len(y)
4 x = np.zeros(n)
5 for i in range(n):
6 x[i] = (y[i] - L[i, :i].dot(x[:i]))/L[i, i]
7 return x
8

9 def up_cholesky(theta: np.ndarray) -> np.ndarray:
10 n = len(theta)
11 L = np.zeros((n, n))
12 for i in range(n):
13 row = Lsolve(L, theta[:i, i])
14 L[i, :i] = row
15 L[i, i] = np.sqrt(theta[i, i] - row.dot(row))
16 return L

Computing the Cholesky Factorization
Up-looking

1 def Lsolve(L: np.ndarray, y: np.ndarray) -> np.ndarray:
2 """ Solves Lx = y for lower triangular L. """
3 n = len(y)
4 x = np.zeros(n)
5 for i in range(n):
6 x[i] = (y[i] - L[i, :i].dot(x[:i]))/L[i, i]
7 return x
8

9 def up_cholesky(theta: np.ndarray) -> np.ndarray:
10 n = len(theta)
11 L = np.zeros((n, n))
12 for i in range(n):
13 row = Lsolve(L, theta[:i, i])
14 L[i, :i] = row
15 L[i, i] = np.sqrt(theta[i, i] - row.dot(row))
16 return L

Computing the Cholesky Factorization
Right-looking

L =
(
l1 l2 · · · lN

)
LL⊤ =

(
l1 l2 · · · lN

)

l⊤1
l⊤2
...
l⊤N

= l1l

⊤
1 + l2l

⊤
2 + · · ·+ lN l⊤N = Θ

From lower triangularity, nested submatrices!

Computing the Cholesky Factorization
Right-looking

L =
(
l1 l2 · · · lN

)
LL⊤ =

(
l1 l2 · · · lN

)

l⊤1
l⊤2
...
l⊤N

= l1l

⊤
1 + l2l

⊤
2 + · · ·+ lN l⊤N = Θ

From lower triangularity, nested submatrices!

Computing the Cholesky Factorization
Right-looking

l1l
⊤
1 + l2l

⊤
2 + · · ·+ lN l⊤N = Θ

l1l
⊤
1 = Θ1

l21 = Θ11

l1 =
√
Θ11

l1 =
Θ1

l1
=

Θ1√
Θ11

l2l
⊤
2 + · · ·+ lN l⊤N = Θ−

(
Θ1√
Θ11

)(
Θ1√
Θ11

)⊤

= Θ− Θ1Θ
⊤
1

Θ11

Proceed inductively on rank-one update

Computing the Cholesky Factorization
Right-looking

l1l
⊤
1 + l2l

⊤
2 + · · ·+ lN l⊤N = Θ

l1l
⊤
1 = Θ1

l21 = Θ11

l1 =
√
Θ11

l1 =
Θ1

l1
=

Θ1√
Θ11

l2l
⊤
2 + · · ·+ lN l⊤N = Θ−

(
Θ1√
Θ11

)(
Θ1√
Θ11

)⊤

= Θ− Θ1Θ
⊤
1

Θ11

Proceed inductively on rank-one update

Computing the Cholesky Factorization
Right-looking

1 def right_cholesky(theta: np.ndarray) -> np.ndarray:
2 M, n = np.copy(theta), len(theta)
3 L = np.zeros((n, n))
4 for i in range(n):
5 L[:, i] = M[:, i]/np.sqrt(M[i, i])
6 M -= np.outer(L[:, i], L[:, i])
7 return L

Computing the Cholesky Factorization
Left-looking

Recall:
l1l

⊤
1 + l2l

⊤
2 + · · ·+ lN l⊤N = Θ

Look at li:

lil
⊤
i =

(
Θ− (l1l

⊤
1 + l2l

⊤
2 + · · ·+ li−1l

⊤
i−1)

)
i

= Θi − (l1il1 + l2il2 + · · ·+ li−1,ili−1)

= Θi −
(
l1 l2 · · · li−1

)

l1i
l2i
...

li,i−1

= Θi − L:,:iLi,:i

Don’t need to store modified Θ in memory!

Computing the Cholesky Factorization
Left-looking

Recall:
l1l

⊤
1 + l2l

⊤
2 + · · ·+ lN l⊤N = Θ

Look at li:

lil
⊤
i =

(
Θ− (l1l

⊤
1 + l2l

⊤
2 + · · ·+ li−1l

⊤
i−1)

)
i

= Θi − (l1il1 + l2il2 + · · ·+ li−1,ili−1)

= Θi −
(
l1 l2 · · · li−1

)

l1i
l2i
...

li,i−1

= Θi − L:,:iLi,:i

Don’t need to store modified Θ in memory!

Computing the Cholesky Factorization
Left-looking

1 def left_cholesky(theta: np.ndarray) -> np.ndarray:
2 n = len(theta)
3 L = np.zeros((n, n))
4 for i in range(n):
5 L[:, i] = theta[:, i] - L[:, :i]@L[i, :i]
6 L[:, i] /= np.sqrt(L[i, i])
7 return L

Computing the Cholesky Factorization
Left-looking

1 def left_cholesky(theta: np.ndarray) -> np.ndarray:
2 n = len(theta)
3 L = np.zeros((n, n))
4 for i in range(n):
5 L[:, i] = theta[:, i] - L[:, :i]@L[i, :i]
6 L[:, i] /= np.sqrt(L[i, i])
7 return L

Table of Contents

1. High-level Summary

2. Cholesky Factorization

3. Schur Complement

4. Multivariate Gaussians

5. Gaussian Process Regression

6. Sparse Cholesky Factorization

7. References

Schur Complement
or recursive Cholesky factorization

Block Θ as follows:

Θ =

(
Θ11 Θ12

Θ21 Θ22

)
Then proceed by one step of Gaussian elimination:(

Θ11 Θ12

0 Θ22 −Θ21Θ
−1
11 Θ12

)
Thus,

=

(
I 0

Θ21Θ
−1
11 I

)(
Θ11 0

0 Θ22 −Θ21Θ
−1
11 Θ12

)(
I Θ−1

11 Θ12

0 I

)
so we see the Cholesky factorization of Θ is(

I 0

Θ21Θ
−1
11 I

)(
chol(Θ11) 0

0 chol(Θ22 −Θ21Θ
−1
11 Θ12)

)
The term in blue is the Schur complement of Θ on Θ11

Schur Complement
or recursive Cholesky factorization

Block Θ as follows:

Θ =

(
Θ11 Θ12

Θ21 Θ22

)
Then proceed by one step of Gaussian elimination:(

Θ11 Θ12

0 Θ22 −Θ21Θ
−1
11 Θ12

)
Thus,

=

(
I 0

Θ21Θ
−1
11 I

)(
Θ11 0

0 Θ22 −Θ21Θ
−1
11 Θ12

)(
I Θ−1

11 Θ12

0 I

)
so we see the Cholesky factorization of Θ is(

I 0

Θ21Θ
−1
11 I

)(
chol(Θ11) 0

0 chol(Θ22 −Θ21Θ
−1
11 Θ12)

)
The term in blue is the Schur complement of Θ on Θ11

Proper Determinant of Block Matrix

Θ =

(
Θ11 Θ12

Θ21 Θ22

)
det(Θ) = ?

= det(Θ11) det(Θ22)− det(Θ21) det(Θ12)? wrong!
= det(Θ11Θ22 −Θ21Θ12)? wrong!

Schur complement gives proper answer:

Θ =

(
I 0

Θ21Θ
−1
11 I

)(
Θ11 0

0 Θ22 −Θ21Θ
−1
11 Θ12

)(
I Θ−1

11 Θ12

0 I

)
det(Θ) = det(Θ11) det(Θ22 −Θ21Θ

−1
11 Θ12)

Proper Determinant of Block Matrix

Θ =

(
Θ11 Θ12

Θ21 Θ22

)
det(Θ) = ?

= det(Θ11) det(Θ22)− det(Θ21) det(Θ12)? wrong!
= det(Θ11Θ22 −Θ21Θ12)? wrong!

Schur complement gives proper answer:

Θ =

(
I 0

Θ21Θ
−1
11 I

)(
Θ11 0

0 Θ22 −Θ21Θ
−1
11 Θ12

)(
I Θ−1

11 Θ12

0 I

)
det(Θ) = det(Θ11) det(Θ22 −Θ21Θ

−1
11 Θ12)

Proper Submatrix of Inverse

Θ =

(
Θ11 Θ12

Θ21 Θ22

)
(Θ−1)22 = ?

= (Θ22)
−1? wrong!

Schur complement to the rescue again!

Proper Submatrix of Inverse

Θ =

(
I 0

Θ21Θ
−1
11 I

)(
Θ11 0

0 Θ22 −Θ21Θ
−1
11 Θ12

)(
I Θ−1

11 Θ12

0 I

)
For notational convenience, we denote the Schur complement
Θ22 −Θ21Θ

−1
11 Θ12 as Θ22|1. Inverting both sides of the equation,

Θ−1 =

(
I −Θ−1

11 Θ12

0 I

)(
Θ−1

11 0

0 Θ−1
22|1

)(
I 0

−Θ21Θ
−1
11 I

)

=

(
Θ−1

11 +
(
Θ−1

11 Θ12

)
Θ−1

22|1
(
Θ21Θ

−1
11

)
−
(
Θ−1

11 Θ12

)
Θ−1

22|1
−Θ−1

22|1
(
Θ21Θ

−1
11

)
Θ−1

22|1

)
So (Θ−1)22 can be read off as Θ−1

22|1,

=
(
Θ22 −Θ21Θ

−1
11 Θ12

)−1

Proper Submatrix of Inverse

Θ =

(
I 0

Θ21Θ
−1
11 I

)(
Θ11 0

0 Θ22 −Θ21Θ
−1
11 Θ12

)(
I Θ−1

11 Θ12

0 I

)
For notational convenience, we denote the Schur complement
Θ22 −Θ21Θ

−1
11 Θ12 as Θ22|1. Inverting both sides of the equation,

Θ−1 =

(
I −Θ−1

11 Θ12

0 I

)(
Θ−1

11 0

0 Θ−1
22|1

)(
I 0

−Θ21Θ
−1
11 I

)

=

(
Θ−1

11 +
(
Θ−1

11 Θ12

)
Θ−1

22|1
(
Θ21Θ

−1
11

)
−
(
Θ−1

11 Θ12

)
Θ−1

22|1
−Θ−1

22|1
(
Θ21Θ

−1
11

)
Θ−1

22|1

)
So (Θ−1)22 can be read off as Θ−1

22|1,

=
(
Θ22 −Θ21Θ

−1
11 Θ12

)−1

A Few Important Questions...
Is the Schur complement symmetric positive definite (s.p.d.)?

If it isn’t, we’re kinda screwed — have been assuming so

Is Schur complementing transitive?

i.e. suppose we have Θ blocked as

Θ =

Θ11 Θ12 Θ13

Θ21 Θ22 Θ23

Θ31 Θ32 Θ33

Is Θ complemented on Θ11 and then on Θ22 the same as

Θ complemented on
(
Θ11 Θ12

Θ21 Θ22

)
?

Intuitively, it should be, but tedious to prove

New perspective which changes everything!

A Few Important Questions...
Is the Schur complement symmetric positive definite (s.p.d.)?

If it isn’t, we’re kinda screwed — have been assuming so

Is Schur complementing transitive?

i.e. suppose we have Θ blocked as

Θ =

Θ11 Θ12 Θ13

Θ21 Θ22 Θ23

Θ31 Θ32 Θ33

Is Θ complemented on Θ11 and then on Θ22 the same as

Θ complemented on
(
Θ11 Θ12

Θ21 Θ22

)
?

Intuitively, it should be, but tedious to prove

New perspective which changes everything!

A Few Important Questions...
Is the Schur complement symmetric positive definite (s.p.d.)?

If it isn’t, we’re kinda screwed — have been assuming so

Is Schur complementing transitive?

i.e. suppose we have Θ blocked as

Θ =

Θ11 Θ12 Θ13

Θ21 Θ22 Θ23

Θ31 Θ32 Θ33

Is Θ complemented on Θ11 and then on Θ22 the same as

Θ complemented on
(
Θ11 Θ12

Θ21 Θ22

)
?

Intuitively, it should be, but tedious to prove

New perspective which changes everything!

A Few Important Questions...
Is the Schur complement symmetric positive definite (s.p.d.)?

If it isn’t, we’re kinda screwed — have been assuming so

Is Schur complementing transitive?
i.e. suppose we have Θ blocked as

Θ =

Θ11 Θ12 Θ13

Θ21 Θ22 Θ23

Θ31 Θ32 Θ33

Is Θ complemented on Θ11 and then on Θ22 the same as

Θ complemented on
(
Θ11 Θ12

Θ21 Θ22

)
?

Intuitively, it should be, but tedious to prove

New perspective which changes everything!

A Few Important Questions...
Is the Schur complement symmetric positive definite (s.p.d.)?

If it isn’t, we’re kinda screwed — have been assuming so

Is Schur complementing transitive?
i.e. suppose we have Θ blocked as

Θ =

Θ11 Θ12 Θ13

Θ21 Θ22 Θ23

Θ31 Θ32 Θ33

Is Θ complemented on Θ11 and then on Θ22 the same as

Θ complemented on
(
Θ11 Θ12

Θ21 Θ22

)
?

Intuitively, it should be, but tedious to prove

New perspective which changes everything!

A Few Important Questions...
Is the Schur complement symmetric positive definite (s.p.d.)?

If it isn’t, we’re kinda screwed — have been assuming so

Is Schur complementing transitive?
i.e. suppose we have Θ blocked as

Θ =

Θ11 Θ12 Θ13

Θ21 Θ22 Θ23

Θ31 Θ32 Θ33

Is Θ complemented on Θ11 and then on Θ22 the same as

Θ complemented on
(
Θ11 Θ12

Θ21 Θ22

)
?

Intuitively, it should be, but tedious to prove

New perspective which changes everything!

A Few Important Questions...
Is the Schur complement symmetric positive definite (s.p.d.)?

If it isn’t, we’re kinda screwed — have been assuming so

Is Schur complementing transitive?
i.e. suppose we have Θ blocked as

Θ =

Θ11 Θ12 Θ13

Θ21 Θ22 Θ23

Θ31 Θ32 Θ33

Is Θ complemented on Θ11 and then on Θ22 the same as

Θ complemented on
(
Θ11 Θ12

Θ21 Θ22

)
?

Intuitively, it should be, but tedious to prove

New perspective which changes everything!

Table of Contents

1. High-level Summary

2. Cholesky Factorization

3. Schur Complement

4. Multivariate Gaussians

5. Gaussian Process Regression

6. Sparse Cholesky Factorization

7. References

The Multivariate Gaussian

Recall: Gaussian (or normal) distribution:

x ∼ N (µ, σ2)

f(x) =
1√
2πσ2

e−
1
2

(x−µ)2

σ2

Important (defining?) property: completely determined by
mean and variance, all higher-order cumulants zero.

We’re going to extend this to higher dimensions. Consider

x ∼ N (µ,Σ)

where x (“variables”) is a N × 1 vector, µ (“mean vector”) is a
N × 1 vector, and Σ (“covariance matrix”) is a N ×N matrix

The Multivariate Gaussian

Recall: Gaussian (or normal) distribution:

x ∼ N (µ, σ2)

f(x) =
1√
2πσ2

e−
1
2

(x−µ)2

σ2

Important (defining?) property: completely determined by
mean and variance, all higher-order cumulants zero.

We’re going to extend this to higher dimensions. Consider

x ∼ N (µ,Σ)

where x (“variables”) is a N × 1 vector, µ (“mean vector”) is a
N × 1 vector, and Σ (“covariance matrix”) is a N ×N matrix

The Multivariate Gaussian

Recall: Gaussian (or normal) distribution:

x ∼ N (µ, σ2)

f(x) =
1√
2πσ2

e−
1
2

(x−µ)2

σ2

Important (defining?) property: completely determined by
mean and variance, all higher-order cumulants zero.

We’re going to extend this to higher dimensions. Consider

x ∼ N (µ,Σ)

where x (“variables”) is a N × 1 vector, µ (“mean vector”) is a
N × 1 vector, and Σ (“covariance matrix”) is a N ×N matrix

Defining Everything

Naturally,

µi = E[xi]

µ = E[x]

Σij = Cov[xi, xj]

= E[(xi − E[xi])(xj − E[xj])]

= E[(x− µ)(x− µ)⊤]

Two natural (and fundamental) questions from here:
1. What is the probability density function f(x)?
2. How can we sample from x ∼ N (µ,Σ)?

Surprisingly enough, Cholesky factorization answers both!

Defining Everything

Naturally,

µi = E[xi]

µ = E[x]

Σij = Cov[xi, xj]

= E[(xi − E[xi])(xj − E[xj])]

= E[(x− µ)(x− µ)⊤]

Two natural (and fundamental) questions from here:
1. What is the probability density function f(x)?
2. How can we sample from x ∼ N (µ,Σ)?

Surprisingly enough, Cholesky factorization answers both!

Defining Everything

Naturally,

µi = E[xi]

µ = E[x]

Σij = Cov[xi, xj]

= E[(xi − E[xi])(xj − E[xj])]

= E[(x− µ)(x− µ)⊤]

Two natural (and fundamental) questions from here:
1. What is the probability density function f(x)?
2. How can we sample from x ∼ N (µ,Σ)?

Surprisingly enough, Cholesky factorization answers both!

Defining Everything

Naturally,

µi = E[xi]

µ = E[x]

Σij = Cov[xi, xj]

= E[(xi − E[xi])(xj − E[xj])]

= E[(x− µ)(x− µ)⊤]

Two natural (and fundamental) questions from here:
1. What is the probability density function f(x)?
2. How can we sample from x ∼ N (µ,Σ)?

Surprisingly enough, Cholesky factorization answers both!

Independent Variables

Gaussian has the (unique?) property if Σij = 0, then xi and
xj are statistically independent. This is not true in general!

Key property we will make heavy use of: moment matching. If
we know µ and Σ, distribution is determined.

Consider: if xi and xj were independent, then Σij = 0. So
suppose xi and xj are not independent but Σij = 0. It’s the
same Σ as when they were independent. So xi and xj must be
distributed like they’re independent. By contradiction, they
must have been independent in the first place!

Independent Variables

Gaussian has the (unique?) property if Σij = 0, then xi and
xj are statistically independent. This is not true in general!

Key property we will make heavy use of: moment matching. If
we know µ and Σ, distribution is determined.

Consider: if xi and xj were independent, then Σij = 0. So
suppose xi and xj are not independent but Σij = 0. It’s the
same Σ as when they were independent. So xi and xj must be
distributed like they’re independent. By contradiction, they
must have been independent in the first place!

Independent Variables

Gaussian has the (unique?) property if Σij = 0, then xi and
xj are statistically independent. This is not true in general!

Key property we will make heavy use of: moment matching. If
we know µ and Σ, distribution is determined.

Consider: if xi and xj were independent, then Σij = 0. So
suppose xi and xj are not independent but Σij = 0. It’s the
same Σ as when they were independent. So xi and xj must be
distributed like they’re independent. By contradiction, they
must have been independent in the first place!

Independent Variables

Gaussian has the (unique?) property if Σij = 0, then xi and
xj are statistically independent. This is not true in general!

Key property we will make heavy use of: moment matching. If
we know µ and Σ, distribution is determined.

Consider: if xi and xj were independent, then Σij = 0. So
suppose xi and xj are not independent but Σij = 0. It’s the
same Σ as when they were independent. So xi and xj must be
distributed like they’re independent. By contradiction, they
must have been independent in the first place!

Completely Independent Variables

Well, if Σ has particular structure, it’s actually trivial:
z ∼ N (0, IN)

zi
i.i.d.∼ N (0, 1)

f(z) =

N∏
i=1

f(zi)

=

N∏
i=1

1√
2π

e−
1
2
z2i

=
1√

(2π)N
e−

1
2
(z21+z22+···+z2N)

=
1√

(2π)N
e−

1
2
z⊤z

Completely Independent Variables

Well, if Σ has particular structure, it’s actually trivial:
z ∼ N (0, IN)

zi
i.i.d.∼ N (0, 1)

f(z) =

N∏
i=1

f(zi)

=

N∏
i=1

1√
2π

e−
1
2
z2i

=
1√

(2π)N
e−

1
2
(z21+z22+···+z2N)

=
1√

(2π)N
e−

1
2
z⊤z

Moment Matching
How can we generalize to arbitrary Σ?

Moment match!

z ∼ N (0, IN)

x = Lz + µ

E[x] = E[Lz + µ] = LE[z] + µ = µ

Cov[x] = E[(x− E[x])(x− E[x])⊤]

= E[Lz(Lz)⊤]

= E[Lzz⊤L⊤]

= LE[zz⊤]L⊤

= LL⊤

so x ∼ N (µ, LL⊤). We want x ∼ N (µ,Σ), so Σ = LL⊤

Moment Matching
How can we generalize to arbitrary Σ?

Moment match!

z ∼ N (0, IN)

x = Lz + µ

E[x] = E[Lz + µ] = LE[z] + µ = µ

Cov[x] = E[(x− E[x])(x− E[x])⊤]

= E[Lz(Lz)⊤]

= E[Lzz⊤L⊤]

= LE[zz⊤]L⊤

= LL⊤

so x ∼ N (µ, LL⊤). We want x ∼ N (µ,Σ), so Σ = LL⊤

Sampling with Cholesky Factorization

As we just saw, we can sample x ∼ N (µ,Σ) by instead
sampling z ∼ N (0, IN) and computing x = Lz + µ.

Since LL⊤ = Σ, a natural pick is L = chol(Σ).

Why is Σ s.p.d.? Because it’s a covariance/Gram matrix!

Σ = E[(x− µ)(x− µ)⊤]

y⊤Σy = y⊤ E[(x− µ)(x− µ)⊤]y

= E[y⊤(x− µ)(x− µ)⊤y]

= E[((x− µ)⊤y)⊤(x− µ)⊤y]

= E[∥(x− µ)⊤y∥2] ≥ 0

Sampling with Cholesky Factorization

As we just saw, we can sample x ∼ N (µ,Σ) by instead
sampling z ∼ N (0, IN) and computing x = Lz + µ.

Since LL⊤ = Σ, a natural pick is L = chol(Σ).

Why is Σ s.p.d.? Because it’s a covariance/Gram matrix!

Σ = E[(x− µ)(x− µ)⊤]

y⊤Σy = y⊤ E[(x− µ)(x− µ)⊤]y

= E[y⊤(x− µ)(x− µ)⊤y]

= E[((x− µ)⊤y)⊤(x− µ)⊤y]

= E[∥(x− µ)⊤y∥2] ≥ 0

Sampling with Cholesky Factorization

As we just saw, we can sample x ∼ N (µ,Σ) by instead
sampling z ∼ N (0, IN) and computing x = Lz + µ.

Since LL⊤ = Σ, a natural pick is L = chol(Σ).

Why is Σ s.p.d.? Because it’s a covariance/Gram matrix!

Σ = E[(x− µ)(x− µ)⊤]

y⊤Σy = y⊤ E[(x− µ)(x− µ)⊤]y

= E[y⊤(x− µ)(x− µ)⊤y]

= E[((x− µ)⊤y)⊤(x− µ)⊤y]

= E[∥(x− µ)⊤y∥2] ≥ 0

Sampling with Cholesky Factorization

As we just saw, we can sample x ∼ N (µ,Σ) by instead
sampling z ∼ N (0, IN) and computing x = Lz + µ.

Since LL⊤ = Σ, a natural pick is L = chol(Σ).

Why is Σ s.p.d.? Because it’s a covariance/Gram matrix!

Σ = E[(x− µ)(x− µ)⊤]

y⊤Σy = y⊤ E[(x− µ)(x− µ)⊤]y

= E[y⊤(x− µ)(x− µ)⊤y]

= E[((x− µ)⊤y)⊤(x− µ)⊤y]

= E[∥(x− µ)⊤y∥2] ≥ 0

Probability Density Function from Sampling

What’s the probability density function f(x)?

Idea: view x resulting from a invertible transformation from z.

We know f(z), so f(x) should be similar!

In scalars:

z ∼ N (0, 1)

x = σz + µ

x ∼ N (µ, σ2)

z =
x− µ

σ

Probability Density Function from Sampling

What’s the probability density function f(x)?

Idea: view x resulting from a invertible transformation from z.

We know f(z), so f(x) should be similar!

In scalars:

z ∼ N (0, 1)

x = σz + µ

x ∼ N (µ, σ2)

z =
x− µ

σ

Probability Density Function from Sampling

What’s the probability density function f(x)?

Idea: view x resulting from a invertible transformation from z.

We know f(z), so f(x) should be similar!

In scalars:

z ∼ N (0, 1)

x = σz + µ

x ∼ N (µ, σ2)

z =
x− µ

σ

Probability Density Function from Sampling

What’s the probability density function f(x)?

Idea: view x resulting from a invertible transformation from z.

We know f(z), so f(x) should be similar!

In scalars:

z ∼ N (0, 1)

x = σz + µ

x ∼ N (µ, σ2)

z =
x− µ

σ

PDF from Sampling — Scalar Edition

Since f(z) is a valid probability density function,

1 =

∫ ∞

−∞
f(z) dz =

∫ ∞

−∞
f(z)

dz

dx
dx

We now perform the change of variables z = x−µ
σ

=

∫ ∞

−∞
f

(
x− µ

σ

)
1

σ︸ ︷︷ ︸
PDF of x

dx

f(z) =
1√
2π

e−
1
2
z2

1

σ
f

(
x− µ

σ

)
=

1

σ

1√
2π

e−
1
2(

x−µ
σ)

2

=
1√
2πσ2

e−
1
2

(x−µ)2

σ2

PDF from Sampling — Vector Edition

x = Lz + µ

z = L−1(x− µ)

Since f(z) is a valid probability density function,

1 =

∫ ∞

−∞
· · ·
∫ ∞

−∞
f(z) dz

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
f(z)

dz

dx
dx (informal)

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
f(z)|det(Jz)| dx (formal)

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
f(L−1(x− µ)) det(L−1)︸ ︷︷ ︸

PDF of x

dx

PDF from Sampling — Vector Edition

f(z) =
1√

(2π)N
e−

1
2
z⊤z

Expanding det(L−1)f(L−1(x− µ)),

=
1

det(L)
f(L−1(x− µ))

=
1

det(L)

1√
(2π)N

e−
1
2
(L−1(x−µ))⊤(L−1(x−µ))

Since LL⊤ = Σ, det(Σ) = det(L)2

=
1√

(2π)N det(Σ)
e−

1
2
(x−µ)⊤L−TL−1(x−µ)

=
1√

(2π)N det(Σ)
e−

1
2
(x−µ)⊤Σ−1(x−µ)

PDF from Sampling — Vector Edition

f(z) =
1√

(2π)N
e−

1
2
z⊤z

Expanding det(L−1)f(L−1(x− µ)),

=
1

det(L)
f(L−1(x− µ))

=
1

det(L)

1√
(2π)N

e−
1
2
(L−1(x−µ))⊤(L−1(x−µ))

Since LL⊤ = Σ, det(Σ) = det(L)2

=
1√

(2π)N det(Σ)
e−

1
2
(x−µ)⊤L−TL−1(x−µ)

=
1√

(2π)N det(Σ)
e−

1
2
(x−µ)⊤Σ−1(x−µ)

Summary

Compare PDFs of multivariate normal and scalar normal:

x ∼ N (µ,Σ)

f(x) =
1√

(2π)N det(Σ)
e−

1
2
(x−µ)⊤Σ−1(x−µ)

Compare to scalar:
x ∼ N (µ, σ2)

f(x) =
1√
2πσ2

e−
1
2

(x−µ)2

σ2

Remarkable similarity!

Summary

Compare PDFs of multivariate normal and scalar normal:

x ∼ N (µ,Σ)

f(x) =
1√

(2π)N det(Σ)
e−

1
2
(x−µ)⊤Σ−1(x−µ)

Compare to scalar:
x ∼ N (µ, σ2)

f(x) =
1√
2πσ2

e−
1
2

(x−µ)2

σ2

Remarkable similarity!

Cholesky Factorization for Gaussians

Sampling: x = Lz + µ, matrix-vector product, O(Ns)

Density computation:

(x− µ)⊤Σ−1(x− µ) = (x− µ)⊤L−⊤L−1(x− µ)

= (L−1(x− µ))⊤L−1(x− µ)

= ∥L−1(x− µ)∥2

Back-substitution, O(Ns)

Cholesky Factorization for Gaussians

Sampling: x = Lz + µ, matrix-vector product, O(Ns)

Density computation:

(x− µ)⊤Σ−1(x− µ) = (x− µ)⊤L−⊤L−1(x− µ)

= (L−1(x− µ))⊤L−1(x− µ)

= ∥L−1(x− µ)∥2

Back-substitution, O(Ns)

Closure of Multivariate Gaussians

Many statistical operations preserve distribution

Affine transformation

Joint distribution & marginalization:

x1 ∼ N (µ1,Σ11)

x2 ∼ N (µ2,Σ22)(
x1

x2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
Conditioning

Closure of Multivariate Gaussians

Many statistical operations preserve distribution

Affine transformation

Joint distribution & marginalization:

x1 ∼ N (µ1,Σ11)

x2 ∼ N (µ2,Σ22)(
x1

x2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
Conditioning

Closure of Multivariate Gaussians

Many statistical operations preserve distribution

Affine transformation

Joint distribution & marginalization:

x1 ∼ N (µ1,Σ11)

x2 ∼ N (µ2,Σ22)(
x1

x2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))

Conditioning

Closure of Multivariate Gaussians

Many statistical operations preserve distribution

Affine transformation

Joint distribution & marginalization:

x1 ∼ N (µ1,Σ11)

x2 ∼ N (µ2,Σ22)(
x1

x2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
Conditioning

Closure of Multivariate Gaussians

Many statistical operations preserve distribution

Affine transformation

Joint distribution & marginalization:

x1 ∼ N (µ1,Σ11)

x2 ∼ N (µ2,Σ22)(
x1

x2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
Conditioning

Conditioning

Assume µ = 0 and use precision instead of covariance!

Q = Σ−1 =

(
Q11 Q12

Q21 Q22

)
π(x2 | x1) =

π(x1 | x2)π(x2)

π(x1)
=

π(x1,x2)

π(x1)

∝ π(x1,x2)

∝ e−
1
2
x⊤
2 Q22x2−(Q21x1)⊤x2

x2 | x1 ∼ N
(
−Q−1

22 Q21x1, Q
−1
22

)
If µ ̸= 0, shift x∗ = x− µ, E[x∗] = 0

x2 | x1 ∼ N
(
µ2 −Q−1

22 Q21(x1 − µ1), Q
−1
22

)

Conditioning with Schur Complements

x2 | x1 ∼ N
(
µ2 −Q−1

22 Q21(x1 − µ1), Q
−1
22

)
Q = Σ−1 =

(
Q11 Q12

Q21 Q22

)
=

(
Σ−1
11 +

(
Σ−1
11 Σ12

)
Σ−1
22|1
(
Σ21Σ

−1
11

)
−
(
Σ−1
11 Σ12

)
Σ−1
22|1

−Σ−1
22|1
(
Σ21Σ

−1
11

)
Σ−1
22|1

)
Q−1

22 = (Σ−1
22|1)

−1 = Σ22|1

= Σ22 − Σ21Σ
−1
11 Σ12

Q−1
22 Q21 = −Σ22|1(Σ

−1
22|1Σ21Σ

−1
11)

= −Σ21Σ
−1
11

x2 | x1 ∼ N
(
µ2 +Σ21Σ

−1
11 (x1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12

)

Conditioning with Schur Complements

x2 | x1 ∼ N
(
µ2 −Q−1

22 Q21(x1 − µ1), Q
−1
22

)
Q = Σ−1 =

(
Q11 Q12

Q21 Q22

)
=

(
Σ−1
11 +

(
Σ−1
11 Σ12

)
Σ−1
22|1
(
Σ21Σ

−1
11

)
−
(
Σ−1
11 Σ12

)
Σ−1
22|1

−Σ−1
22|1
(
Σ21Σ

−1
11

)
Σ−1
22|1

)
Q−1

22 = (Σ−1
22|1)

−1 = Σ22|1

= Σ22 − Σ21Σ
−1
11 Σ12

Q−1
22 Q21 = −Σ22|1(Σ

−1
22|1Σ21Σ

−1
11)

= −Σ21Σ
−1
11

x2 | x1 ∼ N
(
µ2 +Σ21Σ

−1
11 (x1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12

)

Statistical Interpretation

From conditioning,

x2 | x1 ∼ N
(
µ2 +Σ21Σ

−1
11 (x1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12

)

Schur complement ⇐⇒ conditional covariance!

s.p.d. because covariance matrices s.p.d.

Quotient rule statistically trivial:
π((x1 | x2) | x3) = π(x1 | x2, x3)

Conditioning in covariance ⇐⇒ marginalization in precision

Statistical Interpretation

From conditioning,

x2 | x1 ∼ N
(
µ2 +Σ21Σ

−1
11 (x1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12

)
Schur complement ⇐⇒ conditional covariance!

s.p.d. because covariance matrices s.p.d.

Quotient rule statistically trivial:
π((x1 | x2) | x3) = π(x1 | x2, x3)

Conditioning in covariance ⇐⇒ marginalization in precision

Statistical Interpretation

From conditioning,

x2 | x1 ∼ N
(
µ2 +Σ21Σ

−1
11 (x1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12

)
Schur complement ⇐⇒ conditional covariance!

s.p.d. because covariance matrices s.p.d.

Quotient rule statistically trivial:
π((x1 | x2) | x3) = π(x1 | x2, x3)

Conditioning in covariance ⇐⇒ marginalization in precision

Statistical Interpretation

From conditioning,

x2 | x1 ∼ N
(
µ2 +Σ21Σ

−1
11 (x1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12

)
Schur complement ⇐⇒ conditional covariance!

s.p.d. because covariance matrices s.p.d.

Quotient rule statistically trivial:
π((x1 | x2) | x3) = π(x1 | x2, x3)

Conditioning in covariance ⇐⇒ marginalization in precision

Statistical Interpretation

From conditioning,

x2 | x1 ∼ N
(
µ2 +Σ21Σ

−1
11 (x1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12

)
Schur complement ⇐⇒ conditional covariance!

s.p.d. because covariance matrices s.p.d.

Quotient rule statistically trivial:
π((x1 | x2) | x3) = π(x1 | x2, x3)

Conditioning in covariance ⇐⇒ marginalization in precision

Statistical Interpretation

From conditioning,

x2 | x1 ∼ N
(
µ2 +Σ21Σ

−1
11 (x1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12

)
Schur complement ⇐⇒ conditional covariance!

s.p.d. because covariance matrices s.p.d.

Quotient rule statistically trivial:
π((x1 | x2) | x3) = π(x1 | x2, x3)

Conditioning in covariance ⇐⇒ marginalization in precision

Table of Contents

1. High-level Summary

2. Cholesky Factorization

3. Schur Complement

4. Multivariate Gaussians

5. Gaussian Process Regression

6. Sparse Cholesky Factorization

7. References

Gaussian Processes

Probability distribution over vectors

Extend to distribution over functions?

Idea: for finite set of points, function simply vector

X = {x1,x2, . . . ,xN}
y = {f(x1), f(x2), . . . , f(xN)}

Idea: for points we’re not given, marginalization is trivial

How to assign mean and covariance in a sensible way?

Gaussian Processes

Probability distribution over vectors

Extend to distribution over functions?

Idea: for finite set of points, function simply vector

X = {x1,x2, . . . ,xN}
y = {f(x1), f(x2), . . . , f(xN)}

Idea: for points we’re not given, marginalization is trivial

How to assign mean and covariance in a sensible way?

Gaussian Processes

Probability distribution over vectors

Extend to distribution over functions?

Idea: for finite set of points, function simply vector

X = {x1,x2, . . . ,xN}
y = {f(x1), f(x2), . . . , f(xN)}

Idea: for points we’re not given, marginalization is trivial

How to assign mean and covariance in a sensible way?

Gaussian Processes

Probability distribution over vectors

Extend to distribution over functions?

Idea: for finite set of points, function simply vector

X = {x1,x2, . . . ,xN}
y = {f(x1), f(x2), . . . , f(xN)}

Idea: for points we’re not given, marginalization is trivial

How to assign mean and covariance in a sensible way?

Gaussian Processes

Probability distribution over vectors

Extend to distribution over functions?

Idea: for finite set of points, function simply vector

X = {x1,x2, . . . ,xN}
y = {f(x1), f(x2), . . . , f(xN)}

Idea: for points we’re not given, marginalization is trivial

How to assign mean and covariance in a sensible way?

Gaussian Processes

Probability distribution over vectors

Extend to distribution over functions?

Idea: for finite set of points, function simply vector

X = {x1,x2, . . . ,xN}
y = {f(x1), f(x2), . . . , f(xN)}

Idea: for points we’re not given, marginalization is trivial

How to assign mean and covariance in a sensible way?

Gaussian Process Definition

Let µ(x) be the mean function and
K(x,x′) be the covariance function or kernel function

We say

f(x) ∼ GP(µ(x),K(x,x′))

If for all point sets X,
X = {x1,x2, . . . ,xN}
y = {f(x1), f(x2), . . . , f(xN)}
y ∼ N (µ,Θ)

where
µi = µ(xi)

Θij = K(xi,xj)

Regression with Gaussian Processes

Simply condition prediction points on training points:

Θ =

(
ΘTr,Tr ΘTr,Pr
ΘPr,Tr ΘPr,Pr

)
E[yPr | yTr] = µPr +ΘPr,TrΘ

−1
Tr,Tr(yTr − µTr)

Cov[yPr | yTr] = ΘPr,Pr −ΘPr,TrΘ
−1
Tr,TrΘTr,Pr

Nonparametric! No training! Uncertainty quantification!

... O(N3) to compute Θ−1
Tr,Tr

And we’re back to the starting problem

Regression with Gaussian Processes

Simply condition prediction points on training points:

Θ =

(
ΘTr,Tr ΘTr,Pr
ΘPr,Tr ΘPr,Pr

)
E[yPr | yTr] = µPr +ΘPr,TrΘ

−1
Tr,Tr(yTr − µTr)

Cov[yPr | yTr] = ΘPr,Pr −ΘPr,TrΘ
−1
Tr,TrΘTr,Pr

Nonparametric! No training! Uncertainty quantification!

... O(N3) to compute Θ−1
Tr,Tr

And we’re back to the starting problem

Regression with Gaussian Processes

Simply condition prediction points on training points:

Θ =

(
ΘTr,Tr ΘTr,Pr
ΘPr,Tr ΘPr,Pr

)
E[yPr | yTr] = µPr +ΘPr,TrΘ

−1
Tr,Tr(yTr − µTr)

Cov[yPr | yTr] = ΘPr,Pr −ΘPr,TrΘ
−1
Tr,TrΘTr,Pr

Nonparametric! No training! Uncertainty quantification!

... O(N3) to compute Θ−1
Tr,Tr

And we’re back to the starting problem

Regression with Gaussian Processes

Simply condition prediction points on training points:

Θ =

(
ΘTr,Tr ΘTr,Pr
ΘPr,Tr ΘPr,Pr

)
E[yPr | yTr] = µPr +ΘPr,TrΘ

−1
Tr,Tr(yTr − µTr)

Cov[yPr | yTr] = ΘPr,Pr −ΘPr,TrΘ
−1
Tr,TrΘTr,Pr

Nonparametric! No training! Uncertainty quantification!

... O(N3) to compute Θ−1
Tr,Tr

And we’re back to the starting problem

Screening Effect

Figure: Conditional on nearby points, far away points have less covariance

Table of Contents

1. High-level Summary

2. Cholesky Factorization

3. Schur Complement

4. Multivariate Gaussians

5. Gaussian Process Regression

6. Sparse Cholesky Factorization

7. References

Cholesky Factorization by KL Minimization

Measure approximation error by KL divergence:

L := argmin
L̂∈S

DKL

(
N (0,Θ)

∥∥∥N (0, (L̂L̂⊤)−1)
)

Re-write KL divergence:

2DKL

(
N (0,Θ1)

∥∥∥N (0,Θ2)
)
=

trace(Θ−1
2 Θ1) + logdet(Θ2)− logdet(Θ1)−N

where Θ1 and Θ2 are both of size N ×N

Cholesky Factorization by KL Minimization

Measure approximation error by KL divergence:

L := argmin
L̂∈S

DKL

(
N (0,Θ)

∥∥∥N (0, (L̂L̂⊤)−1)
)

Re-write KL divergence:

2DKL

(
N (0,Θ1)

∥∥∥N (0,Θ2)
)
=

trace(Θ−1
2 Θ1) + logdet(Θ2)− logdet(Θ1)−N

where Θ1 and Θ2 are both of size N ×N

Cholesky Factorization by KL Minimization

Measure approximation error by KL divergence:

L := argmin
L̂∈S

DKL

(
N (0,Θ)

∥∥∥N (0, (L̂L̂⊤)−1)
)

Re-write KL divergence:

2DKL

(
N (0,Θ1)

∥∥∥N (0,Θ2)
)
=

trace(Θ−1
2 Θ1) + logdet(Θ2)− logdet(Θ1)−N

where Θ1 and Θ2 are both of size N ×N

Cholesky Factorization as GP Regression
Theorem
[1]. The non-zero entries of the ith column of L are:

Lsi,i =
Θ−1

si,sie1√
e⊤1 Θ

−1
si,sie1

Plugging the optimal L back into the KL divergence, we obtain:

N∑
i=1

[
log
(
(e⊤1 Θ

−1
si,sie1)

−1
)]

− logdet(Θ)

But marginalization in covariance is conditioning in precision!

(e⊤1 Θ
−1
si,sie1)

−1 = Θii|si−{i}

This is precisely sparse Gaussian process regression!

Cholesky Factorization as GP Regression
Theorem
[1]. The non-zero entries of the ith column of L are:

Lsi,i =
Θ−1

si,sie1√
e⊤1 Θ

−1
si,sie1

Plugging the optimal L back into the KL divergence, we obtain:

N∑
i=1

[
log
(
(e⊤1 Θ

−1
si,sie1)

−1
)]

− logdet(Θ)

But marginalization in covariance is conditioning in precision!

(e⊤1 Θ
−1
si,sie1)

−1 = Θii|si−{i}

This is precisely sparse Gaussian process regression!

Cholesky Factorization as GP Regression
Theorem
[1]. The non-zero entries of the ith column of L are:

Lsi,i =
Θ−1

si,sie1√
e⊤1 Θ

−1
si,sie1

Plugging the optimal L back into the KL divergence, we obtain:

N∑
i=1

[
log
(
(e⊤1 Θ

−1
si,sie1)

−1
)]

− logdet(Θ)

But marginalization in covariance is conditioning in precision!

(e⊤1 Θ
−1
si,sie1)

−1 = Θii|si−{i}

This is precisely sparse Gaussian process regression!

Cholesky Factorization as GP Regression
Theorem
[1]. The non-zero entries of the ith column of L are:

Lsi,i =
Θ−1

si,sie1√
e⊤1 Θ

−1
si,sie1

Plugging the optimal L back into the KL divergence, we obtain:

N∑
i=1

[
log
(
(e⊤1 Θ

−1
si,sie1)

−1
)]

− logdet(Θ)

But marginalization in covariance is conditioning in precision!

(e⊤1 Θ
−1
si,sie1)

−1 = Θii|si−{i}

This is precisely sparse Gaussian process regression!

Table of Contents

1. High-level Summary

2. Cholesky Factorization

3. Schur Complement

4. Multivariate Gaussians

5. Gaussian Process Regression

6. Sparse Cholesky Factorization

7. References

References

[1] F. Schäfer, M. Katzfuss, and H. Owhadi, “Sparse Cholesky
factorization by Kullback-Leibler minimization,” arXiv preprint
arXiv:2004.14455, 2020.

Thank You!

Thank You!

	High-level Summary
	Cholesky Factorization
	Schur Complement
	Multivariate Gaussians
	Gaussian Process Regression
	Sparse Cholesky Factorization
	References
	References

