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Figure: Suugaku Josi (Math Girls) by Masae Yasuda

https://www.takeshobo.co.jp/book_d/shohin/2036201


Some examples

First example

2, 4, 6, 8

2 + 6 + 8/4 = 10

Second example

6, 2, 4, 5

(6 + 4− 5)× 2 = 10

Third example

3, 4, 7, 8



Initial observations

Easy to prove (just give construction)

Hard to disprove (prove impossible?)

Computer-assisted proofs

Try to prove sequences of numbers can make10



Fibonacci sequence

Definition
Fibonacci sequence Fn defined recursively:

F0 := 0

F1 := 1

Fn = Fn−1 + Fn−2.

The first few terms are 0, 1, 1, 2, 3, 5, 8, 13, . . .



A claim

Theorem
make10([Fi]

n
i=1) if and only if n > 3.



A claim

Theorem
make10([Fi]

n
i=1) if and only if n > 3.

Proof.
“Base” cases:

n = 0: ∅.
n = 1: 1.
n = 2: 1, 1.
n = 3: 1, 1, 2.

All impossible.



A claim
Theorem
make10([Fi]

n
i=1) if and only if n > 3.

Proof.
Base cases:

n = 4: 1, 1, 2, 3.
(1 + 1 + 3)× 2.

n = 5: 1, 1, 2, 3, 5.

(3− 2)× 5× (1 + 1).

n = 6: 1, 1, 2, 3, 5, 8.

1 + 1 + 2 + 3− 5 + 8.

Found contiguous n ≡ 1, 2, 0 (mod 3).



A claim

Theorem
make10([Fi]

n
i=1) if and only if n > 3.

Proof.
By induction.
Let n = 3k + r for k > 1, 0 ≤ r < 3.
By definition Fn+2 = Fn+1 + Fn, so Fn+2 − Fn+1 − Fn = 0.
Take

[Fn+2−Fn+1−Fn]+[Fn−1−Fn−2−Fn−3]+ · · ·+make10([Fi]
k∈{4,5,6}
i=1 )

depending on r (pick k ≡ r (mod 3)).



Commentary

How reliant on structure was the result?

How far can we push this?

Fn ∼ ϕn where ϕ := (1 +
√
5)/2 is the golden ratio

First prove (surprisingly) useful lemma. . .



Constant

Lemma
For any integer x ̸= 0, make10([x]ni=1) if n > 8.



Constant

Lemma
For any integer x ̸= 0, make10([x]ni=1) if n > 8.

Proof.
Follow previous sketch.

n = 9:

(x+ x)× (x+ x+ x+ x+ x)/x/x = (2x)(5x)/x2 = 10

n = 10:

(x/x+ x/x)× (x+ x+ x+ x+ x)/x = (2)(5x)/x = 10

Continuous in (mod 2).



Constant

Lemma
For any integer x ̸= 0, make10([x]ni=1) if n > 8.

Proof.
By induction again.
Take (x− x) + (x− x) + · · ·+make10([x]

k∈{9,10}
i=1 ).



Constant

Lemma
For any integer x ̸= 0, make10([x]ni=1) if n > 8.

Proof.
By induction again.
Take (x− x) + (x− x) + · · ·+make10([x]

k∈{9,10}
i=1 ).

Conjecture.

There exists a constant X such that for all x > X, make10([x]ni=1)
if and only if n > 8.



Exponential

Corollary

For any integer x ̸= 0, make10([xi]ni=1) if n > 16.



Exponential

Corollary

For any integer x ̸= 0, make10([xi]ni=1) if n > 16.

Proof.
Take adjacent quotients of pairs of [x, x2, ..., xn], from right to left.
Let n = 2k or 2k + 1 depending on parity of n.
We get [x, ..., x], a list of k or (k+ 1) x’s depending on parity of n.
But we know make10 of a list of k constants is possible if k > 8.
So we need k > 8 or n > 16.



Linear

Corollary

make10([i]ni=1) if n > 16.



Linear

Corollary

make10([i]ni=1) if n > 16.

Proof.
Take adjacent differences of pairs of [1, 2, . . . , n], from right to left.
The proof follows identically, with x = 1.



Linear

Corollary

make10([i]ni=1) if n > 16.

Proof.
Take adjacent differences of pairs of [1, 2, . . . , n], from right to left.
The proof follows identically, with x = 1.

Note.
Since x = 1, it’s possible to sharpen the lemma to

n = 7: (1 + 1)× (1 + 1 + 1 + 1 + 1).
n = 8: (1 + 1)× (1 + 1 + 1 + 1 + 1)× 1.

This means we can improve the bound to k > 7, or n > 14.
This is still not even close to tight.



Optimal linear

Theorem
make10([i]ni=1) if and only if n > 3.



Optimal linear

Theorem
make10([i]ni=1) if and only if n > 3.

Proof.
Base cases:

n = 1. Impossible.
n = 2. Impossible.
n = 3. Impossible.
n = 4. 1 + 2 + 3 + 4.
n = 5. (1 + 2 + 3− 4)× 5.
n = 6. (6− 5)× (1 + 2 + 3 + 4).



Optimal linear

Theorem
make10([i]ni=1) if and only if n > 3.

Proof.
For n > 6 consider:

[(n−3)−(n−1)]×
[
1 + 2 + · · ·+ (n− 6)

n− 5
+ (n− 4)− (n− 2)

]
+n

Clearly every number from 1, . . . , n is included. Simplifying,

= (−2)[((n− 6)(n− 5)/2)/(n− 5)− 2] + n

= −(n− 6) + 4 + n

= 10

which was to be proven.



Towards arbitrary polynomials

We would like to strengthen this result

Most natural generalization to monomials ik

Would like to prove something of the flavor

Theorem
For any natural k there exists a N such that for all n > N ,
make10([ik]ni=1). (Note that N is allowed to depend on k.)



Discrete calculus

Definition
The discrete derivative of a sequence of n numbers
f : {1, . . . , n} → R is the new sequence of n− 1 numbers defined
by df(i) := f(i+ 1)− f(i) for 1 ≤ i < n.

Theorem
d is a linear operator on f .

Lemma
Recall an operator d is said to be linear if

d(f + g) = df + dg

d(cf) = c(df)

for all f, g ∈ Rn and c ∈ R.



Derivative of a monomial

Lemma
If f(i) = cik for some natural k and real c, then df is a
(k − 1)-degree polynomial in i with leading coefficient kc.



Derivative of a monomial

Lemma
If f(i) = cik for some natural k and real c, then df is a
(k − 1)-degree polynomial in i with leading coefficient kc.

Proof.
Use the binomial theorem

(i+ 1)k =

k∑
j=0

(
k

j

)
ij1k−j =

k∑
j=0

(
k

j

)
ij .

df(i) = c[(i+ 1)k − ik] = c

k−1∑
j=0

(
k

j

)
ij .

where we used that when j = k,
(
k
k

)
ik = ik.

The leading term is c
(

k
k−1

)
ik−1 = ckik−1 as claimed.



Derivative of a polynomial

Lemma
If f(i) is a k-degree polynomial in i with leading coefficient c, then
df is a (k − 1)-degree polynomial in i with leading coefficient kc.



Derivative of a polynomial

Lemma
If f(i) is a k-degree polynomial in i with leading coefficient c, then
df is a (k − 1)-degree polynomial in i with leading coefficient kc.

Proof.
Apply the previous lemma term-by-term with the linearity of d.
For all terms ij with j < k, derivative has power < k − 1.
Thus the only term which affects the leading coefficient is ik, by the
previous lemma, derivative has leading term ckik−1, as claimed.



Repeated derivatives

Lemma
If f(i) = cik for natural k and real c, then dkf = k!.



Repeated derivatives

Lemma
If f(i) = cik for natural k and real c, then dkf = k!.

Proof.
Repeatedly apply the previous lemma until left with a constant.



Proving the claim

Theorem
For any natural k there exists a N such that for all n > N ,
make10([ik]ni=1).



Proving the claim

Theorem
For any natural k there exists a N such that for all n > N ,
make10([ik]ni=1).

Definition
Define the operator d2f on f ∈ Rn as

d2f(i) :=

{
df [begin : 2 : end] n ≡ 0 (mod 2)

[f [begin],df [begin + 1 : 2 : end]] n ≡ 1 (mod 2)

in Julia slice notation.



Proving the claim

Theorem
For any natural k there exists a N such that for all n > N ,
make10([ik]ni=1).

Proof.
Since df is a (k − 1)-degree polynomial, d2f is a also a
(k− 1)-degree polynomial, possibly with a “Dirac” at the beginning.

Derivatives of Diracs
The derivative of a Dirac at i = 1 stays a Dirac (with flipped sign).
This is not true for a Dirac placed in the middle!

We can essentially ignore the effect of the Dirac (linearity).



Proving the claim

Theorem
For any natural k there exists a N such that for all n > N ,
make10([ik]ni=1).

Proof.
Note that |df(i)| ≤ |f(i+ 1)|+ |f(i)|.
Since each value is represented exactly once in d2, ∥d2f∥1 ≤ ∥f∥1.
By induction,

∥∥dk2f∥∥1 ≤ ∥f∥1, so |δ| ≤
∣∣1k + · · ·+ nk

∣∣ < O(nk+1)
where |δ| denotes the size of the Dirac.
If we have [x, . . . , x, y], we can trivially do this in O(|y|) x’s by

y − [x/x+ x/x+ · · ·+ x/x].

Since |δ| grows with n, this leads to infinite regress (we need more
terms to control the Dirac, which leads to the Dirac growing).



Proving the claim

Theorem
For any natural k there exists a N such that for all n > N ,
make10([ik]ni=1).

Proof.
We can get out of this by either finding a tighter bound on |δ| or a
more efficient algorithm for controlling the Dirac. We will do both.
Write y in binary. Form 2 by (x+ x)/x, to get 2i we need i copies.
For i digits, need O(i2) x’s or O(log2(|y|)). Is this enough?
We can take n > O(2(1+o(1))k). But we can do better.
We can bound

∣∣dk2f(i)∣∣ ≤ 2(
k
2)k!. Since this is independent of n,

we can take n > O(2k
2
) which is massive, but workable. With the

more efficient algorithm, we can take n > O(k22k).



Expressivity of polynomials

Theorem
(Expressivity of polynomials) For any sequence f on n terms, there
exists a (n− 1)-degree polynomial p such that f(i) = p(i).

Proof.
Each i defines a linear constraint in the n coefficients of p.
There are n points and n coefficients defining a n×n linear system.
This system is solvable if and only if all of the points (the i’s) are
distinct, which they necessarily are.



Commentary

Certificate requires Õ(2k) terms for a k-degree polynomial

We’d need Õ(2n) terms for an arbitrary sequence of length n

Trade-off between “complexity” of sequence (as measured by
polynomial degree) and “training data” (number of terms)

From this perspective, make10 measures the difficulty of the
learning problem in modeling/understanding the sequence.



Conjectures

conjecture

make10([Fn, Fn+1, Fn+2, Fn+3]) is impossible for n > 5.

conjecture

make10([n, n, n, n]) is impossible for n > 20.
(checked by computer up to n = 105)

conjecture

make10([n, n+ 1, n+ 2, n+ 3]) is impossible for n > 22.
(checked by computer up to n = 105)

conjecture

For any natural k there exists a N such that for all n > N ,
make10([nk, (n+ 1)k, (n+ 2)k, (n+ 3)k]) is impossible.



Conclusion

Children’s game to improve mental arithmetic

Study how to make10 with longer sequences

How to prove make10 is impossible?

Computer-assisted proofs



Just now...!!?



Julia code I
1 import Base.show
2
3
4 const RATIONAL = false
5
6 divide(x, y) = RATIONAL ? x // y : x / y
7
8 const OPERATORS = [
9 ((x, y) -> x + y, '+', false),

10 ((x, y) -> x - y, '-', false),
11 ((x, y) -> y - x, '-', true),
12 ((x, y) -> x * y, '*', false),
13 ((x, y) -> divide(x, y), '/', false),
14 ((x, y) -> divide(y, x), '/', true),
15 ]
16
17 const LEAF = '.'
18
19
20 struct Tree{T}
21 value::T
22 left::Union{Tree{T},Nothing}
23 right::Union{Tree{T},Nothing}
24 name::Char
25 end
26
27
28 Tree(x) = Tree(divide(x, one(x)), nothing, nothing, LEAF)
29
30 isleaf(x) = x.name == LEAF
31



Julia code II

32 isunit(x) = !in(x.name, ['+', '-'])
33
34 const PAREN_TABLE = Dict(
35 '+' => Pair((_) -> true, (_) -> true),
36 '-' => Pair((_) -> true, isunit),
37 '*' => Pair(isunit, isunit),
38 '/' => Pair(isunit, isleaf),
39 )
40
41 function show(io::IO, tree::Tree)
42 value = if isleaf(tree)
43 Int(tree.value)
44 else
45 left = repr(tree.left; context=io)
46 right = repr(tree.right; context=io)
47 left_paren, right_paren = PAREN_TABLE[tree.name]
48 left_repr = !left_paren(tree.left) ? "($left)" : left
49 right_repr = !right_paren(tree.right) ? "($right)" : right
50 "$left_repr $(tree.name) $right_repr"
51 end
52 return print(io, value)
53 end
54
55
56 function key(nums)
57 return Tuple(sort([tree.value for tree in nums]))
58 end
59
60 make10(nums) = make10!(collect(map(Tree, nums)))
61



Julia code III
62 function make10!(nums; cache=Set())
63 n = length(nums)
64 n == 0 && return nothing
65 n == 1 && nums[begin].value == 10 && return nums[begin]
66 for i in 1:n
67 for j in i:(n - 1)
68 for (op, name, flip) in OPERATORS
69 x = popat!(nums, i)
70 y = popat!(nums, j)
71 value = op(x.value, y.value)
72 pushfirst!(nums, Tree(value, flip ? y : x, flip ? x : y, name))
73 k = key(nums)
74 if !in(k, cache)
75 push!(cache, k)
76 rtn = make10!(nums; cache)
77 # no need to maintain the invariant
78 !isnothing(rtn) && return rtn
79 end
80 # restore order
81 popfirst!(nums)
82 insert!(nums, j, y)
83 insert!(nums, i, x)
84 end
85 end
86 end
87 end
88
89 @assert !isnothing(make10([2, 4, 6, 8])) "failed example 1"
90 @assert !isnothing(make10([6, 2, 4, 5])) "failed example 2"
91 println(make10([3, 4, 7, 8]))
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