make10

Stephen Huan

https://cgdct.moe

Theory club 2023-09-08

Overview

Introduction

Sequences
Fibonacci
Constant
Exponential
Linear
Polynomial

Conjectures

Conclusion

make10

Figure: Suugaku Josi (Math Girls) by Masae Yasuda

Some examples

First example
2, 4, 6, 8

$$
2+6+8 / 4=10
$$

Second example

6, 2, 4, 5

$$
(6+4-5) \times 2=10
$$

Third example

3, 4, 7, 8

Initial observations

Easy to prove (just give construction)
Hard to disprove (prove impossible?)

Computer-assisted proofs

Try to prove sequences of numbers can make10

Fibonacci sequence

Definition

Fibonacci sequence F_{n} defined recursively:

$$
\begin{aligned}
& F_{0}:=0 \\
& F_{1}:=1 \\
& F_{n}=F_{n-1}+F_{n-2}
\end{aligned}
$$

The first few terms are $0,1,1,2,3,5,8,13, \ldots$

A claim

Theorem

make $10\left(\left[F_{i}\right]_{i=1}^{n}\right)$ if and only if $n>3$.

A claim

Theorem

make $10\left(\left[F_{i}\right]_{i=1}^{n}\right)$ if and only if $n>3$.

Proof.

"Base" cases:

$$
\begin{aligned}
& n=0: \emptyset \\
& n=1: 1 \\
& n=2: 1,1 \\
& n=3: 1,1,2
\end{aligned}
$$

All impossible.

Theorem

make $10\left(\left[F_{i}\right]_{i=1}^{n}\right)$ if and only if $n>3$.

Proof.

Base cases:

$$
\begin{aligned}
& n=4: 1,1,2,3 . \\
& n=5: 1,1,2,3,5 . \\
& n=6: 1,1,2,3,5,8 \\
& n \\
& n+2) \times 5 \times(1+1) . \\
& \\
& n+1+2+3-5+8 .
\end{aligned}
$$

Found contiguous $n \equiv 1,2,0(\bmod 3)$.

A claim

Theorem

make $10\left(\left[F_{i}\right]_{i=1}^{n}\right)$ if and only if $n>3$.

Proof.

By induction.
Let $n=3 k+r$ for $k>1,0 \leq r<3$.
By definition $F_{n+2}=F_{n+1}+F_{n}$, so $F_{n+2}-F_{n+1}-F_{n}=0$. Take
$\left[F_{n+2}-F_{n+1}-F_{n}\right]+\left[F_{n-1}-F_{n-2}-F_{n-3}\right]+\cdots+\operatorname{make10}\left(\left[F_{i}\right]_{i=1}^{k \in\{4,5,6\}}\right)$
depending on $r($ pick $k \equiv r(\bmod 3))$.

Commentary

How reliant on structure was the result?

How far can we push this?
$F_{n} \sim \phi^{n}$ where $\phi:=(1+\sqrt{5}) / 2$ is the golden ratio
First prove (surprisingly) useful lemma...

Constant

Lemma

For any integer $x \neq 0$, make $10\left([x]_{i=1}^{n}\right)$ if $n>8$.

Constant

Lemma

For any integer $x \neq 0$, make $10\left([x]_{i=1}^{n}\right)$ if $n>8$.

Proof.

Follow previous sketch.

$$
\begin{aligned}
n= & 9 \\
& (x+x) \times(x+x+x+x+x) / x / x=(2 x)(5 x) / x^{2}=10 \\
n= & 10 \\
& (x / x+x / x) \times(x+x+x+x+x) / x=(2)(5 x) / x=10
\end{aligned}
$$

Continuous in $(\bmod 2)$.

Constant

Lemma

For any integer $x \neq 0$, make $10\left([x]_{i=1}^{n}\right)$ if $n>8$.

Proof.

By induction again.
Take $(x-x)+(x-x)+\cdots+$ make $10\left([x]_{i=1}^{k \in\{9,10\}}\right)$.

Constant

Lemma

For any integer $x \neq 0$, make $10\left([x]_{i=1}^{n}\right)$ if $n>8$.

Proof.

By induction again.
Take $(x-x)+(x-x)+\cdots+$ make $10\left([x]_{i=1}^{k \in\{9,10\}}\right)$.

Conjecture.

There exists a constant X such that for all $x>X$, make $10\left([x]_{i=1}^{n}\right)$ if and only if $n>8$.

Exponential

Corollary

For any integer $x \neq 0$, make $10\left(\left[x^{i}\right]_{i=1}^{n}\right)$ if $n>16$.

Exponential

Corollary

For any integer $x \neq 0$, make $10\left(\left[x^{i}\right]_{i=1}^{n}\right)$ if $n>16$.

Proof.

Take adjacent quotients of pairs of $\left[x, x^{2}, \ldots, x^{n}\right]$, from right to left. Let $n=2 k$ or $2 k+1$ depending on parity of n. We get $[x, \ldots, x]$, a list of k or $(k+1) x$'s depending on parity of n. But we know make10 of a list of k constants is possible if $k>8$. So we need $k>8$ or $n>16$.

Linear

Corollary

 make10 $\left([i]_{i=1}^{n}\right)$ if $n>16$.
Linear

Corollary

make10 $\left([i]_{i=1}^{n}\right)$ if $n>16$.

Proof.

Take adjacent differences of pairs of $[1,2, \ldots, n]$, from right to left. The proof follows identically, with $x=1$.

Linear

Corollary

make10 $\left([i]_{i=1}^{n}\right)$ if $n>16$.

Proof.

Take adjacent differences of pairs of $[1,2, \ldots, n]$, from right to left. The proof follows identically, with $x=1$.

Note.

Since $x=1$, it's possible to sharpen the lemma to

$$
\begin{aligned}
& n=7:(1+1) \times(1+1+1+1+1) \\
& n=8:(1+1) \times(1+1+1+1+1) \times 1
\end{aligned}
$$

This means we can improve the bound to $k>7$, or $n>14$. This is still not even close to tight.

Optimal linear

Theorem

 make $10\left([i]_{i=1}^{n}\right)$ if and only if $n>3$.
Optimal linear

Theorem

make $10\left([i]_{i=1}^{n}\right)$ if and only if $n>3$.

Proof.

Base cases:

$$
\begin{aligned}
& n=1 . \text { Impossible. } \\
& n=2 . \text { Impossible. } \\
& n=3 . \text { Impossible. } \\
& n=4 . \quad 1+2+3+4 . \\
& n=5 . \quad(1+2+3-4) \times 5 . \\
& n=6 . \quad(6-5) \times(1+2+3+4) .
\end{aligned}
$$

Optimal linear

Theorem

make10 $\left([i]_{i=1}^{n}\right)$ if and only if $n>3$.

Proof.

For $n>6$ consider:

$$
[(n-3)-(n-1)] \times\left[\frac{1+2+\cdots+(n-6)}{n-5}+(n-4)-(n-2)\right]+n
$$

Clearly every number from $1, \ldots, n$ is included. Simplifying,

$$
\begin{aligned}
& =(-2)[((n-6)(n-5) / 2) /(n-5)-2]+n \\
& =-(n-6)+4+n \\
& =10
\end{aligned}
$$

which was to be proven.

Towards arbitrary polynomials

We would like to strengthen this result
Most natural generalization to monomials i^{k}
Would like to prove something of the flavor

Theorem

For any natural k there exists a N such that for all $n>N$, make10 $\left(\left[i^{k}\right]_{i=1}^{n}\right)$. (Note that N is allowed to depend on k.)

Discrete calculus

Definition

The discrete derivative of a sequence of n numbers $f:\{1, \ldots, n\} \rightarrow \mathbb{R}$ is the new sequence of $n-1$ numbers defined by $\mathrm{d} f(i):=f(i+1)-f(i)$ for $1 \leq i<n$.

Theorem

d is a linear operator on f.

Lemma

Recall an operator d is said to be linear if

$$
\begin{aligned}
\mathrm{d}(f+g) & =\mathrm{d} f+\mathrm{d} g \\
\mathrm{~d}(c f) & =c(\mathrm{~d} f)
\end{aligned}
$$

for all $f, g \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$.

Derivative of a monomial

Lemma

If $f(i)=c i^{k}$ for some natural k and real c, then $\mathrm{d} f$ is a ($k-1$)-degree polynomial in i with leading coefficient $k c$.

Derivative of a monomial

Lemma

If $f(i)=c i^{k}$ for some natural k and real c, then $\mathrm{d} f$ is a
($k-1$)-degree polynomial in i with leading coefficient $k c$.

Proof.

Use the binomial theorem

$$
\begin{aligned}
(i+1)^{k} & =\sum_{j=0}^{k}\binom{k}{j} i^{j} 1^{k-j}=\sum_{j=0}^{k}\binom{k}{j} i^{j} \\
\mathrm{~d} f(i) & =c\left[(i+1)^{k}-i^{k}\right]=c \sum_{j=0}^{k-1}\binom{k}{j} i^{j}
\end{aligned}
$$

where we used that when $j=k,\binom{k}{k} i^{k}=i^{k}$.
The leading term is $c\binom{k}{k-1} i^{k-1}=c k i^{k-1}$ as claimed.

Derivative of a polynomial

Lemma

If $f(i)$ is a k-degree polynomial in i with leading coefficient c, then $\mathrm{d} f$ is a $(k-1)$-degree polynomial in i with leading coefficient $k c$.

Derivative of a polynomial

Lemma

If $f(i)$ is a k-degree polynomial in i with leading coefficient c, then $\mathrm{d} f$ is a $(k-1)$-degree polynomial in i with leading coefficient $k c$.

Proof.

Apply the previous lemma term-by-term with the linearity of d. For all terms i^{j} with $j<k$, derivative has power $<k-1$.
Thus the only term which affects the leading coefficient is i^{k}, by the previous lemma, derivative has leading term $c k i^{k-1}$, as claimed.

Repeated derivatives

Lemma

If $f(i)=c i^{k}$ for natural k and real c, then $\mathrm{d}^{k} f=k$!.

Repeated derivatives

Lemma

If $f(i)=c i^{k}$ for natural k and real c, then $\mathrm{d}^{k} f=k$!.

Proof.

Repeatedly apply the previous lemma until left with a constant.

Proving the claim

Theorem

For any natural k there exists a N such that for all $n>N$, make10 $\left(\left[i^{k}\right]_{i=1}^{n}\right)$.

Proving the claim

Theorem

For any natural k there exists a N such that for all $n>N$, make10 $\left(\left[i^{k}\right]_{i=1}^{n}\right)$.

Definition

Define the operator $\mathrm{d}_{2} f$ on $f \in \mathbb{R}^{n}$ as

$$
\mathrm{d}_{2} f(i):=\left\{\begin{array}{lll}
\mathrm{d} f[\text { begin }: 2: \text { end }] & n \equiv 0 & (\bmod 2) \\
{[f[\text { begin }], \mathrm{d} f[\text { begin }+1: 2: \text { end }]]} & n \equiv 1 & (\bmod 2)
\end{array}\right.
$$

in Julia slice notation.

Proving the claim

Theorem

For any natural k there exists a N such that for all $n>N$, make10 $\left(\left[i^{k}\right]_{i=1}^{n}\right)$.

Proof.

Since $\mathrm{d} f$ is a $(k-1)$-degree polynomial, $\mathrm{d}_{2} f$ is a also a ($k-1$)-degree polynomial, possibly with a "Dirac" at the beginning.

Derivatives of Diracs

The derivative of a Dirac at $i=1$ stays a Dirac (with flipped sign). This is not true for a Dirac placed in the middle!

We can essentially ignore the effect of the Dirac (linearity).

Proving the claim

Theorem

For any natural k there exists a N such that for all $n>N$, make10 $\left(\left[i^{k}\right]_{i=1}^{n}\right)$.

Proof.

Note that $|\mathrm{d} f(i)| \leq|f(i+1)|+|f(i)|$.
Since each value is represented exactly once in $\mathrm{d}_{2},\left\|\mathrm{~d}_{2} f\right\|_{1} \leq\|f\|_{1}$. By induction, $\left\|\mathrm{d}_{2}^{k} f\right\|_{1} \leq\|f\|_{1}$, so $|\delta| \leq\left|1^{k}+\cdots+n^{k}\right|<\mathcal{O}\left(n^{k+1}\right)$ where $|\delta|$ denotes the size of the Dirac.
If we have $[x, \ldots, x, y]$, we can trivially do this in $\mathcal{O}(|y|) x$'s by

$$
y-[x / x+x / x+\cdots+x / x] .
$$

Since $|\delta|$ grows with n, this leads to infinite regress (we need more terms to control the Dirac, which leads to the Dirac growing).

Proving the claim

Theorem

For any natural k there exists a N such that for all $n>N$, make10 $\left(\left[i^{k}\right]_{i=1}^{n}\right)$.

Proof.

We can get out of this by either finding a tighter bound on $|\delta|$ or a more efficient algorithm for controlling the Dirac. We will do both. Write y in binary. Form 2 by $(x+x) / x$, to get 2^{i} we need i copies. For i digits, need $\mathcal{O}\left(i^{2}\right) x$'s or $\mathcal{O}\left(\log ^{2}(|y|)\right)$. Is this enough? We can take $n>\mathcal{O}\left(2^{(1+o(1)) k}\right)$. But we can do better. We can bound $\left|\mathrm{d}_{2}^{k} f(i)\right| \leq 2^{\binom{k}{2}} k$!. Since this is independent of n, we can take $n>\mathcal{O}\left(2^{k^{2}}\right)$ which is massive, but workable. With the more efficient algorithm, we can take $n>\mathcal{O}\left(k^{2} 2^{k}\right)$.

Expressivity of polynomials

Theorem

(Expressivity of polynomials) For any sequence f on n terms, there exists a $(n-1)$-degree polynomial p such that $f(i)=p(i)$.

Proof.

Each i defines a linear constraint in the n coefficients of p. There are n points and n coefficients defining a $n \times n$ linear system. This system is solvable if and only if all of the points (the i 's) are distinct, which they necessarily are.

Commentary

Certificate requires $\widetilde{\mathcal{O}}\left(2^{k}\right)$ terms for a k-degree polynomial
We'd need $\widetilde{\mathcal{O}}\left(2^{n}\right)$ terms for an arbitrary sequence of length n

Trade-off between "complexity" of sequence (as measured by polynomial degree) and "training data" (number of terms)

From this perspective, make10 measures the difficulty of the learning problem in modeling/understanding the sequence.

Conjectures

conjecture

$\operatorname{make} 10\left(\left[F_{n}, F_{n+1}, F_{n+2}, F_{n+3}\right]\right)$ is impossible for $n>5$.

conjecture

make10 $([n, n, n, n])$ is impossible for $n>20$.
(checked by computer up to $n=10^{5}$)

conjecture

make10 $([n, n+1, n+2, n+3])$ is impossible for $n>22$.
(checked by computer up to $n=10^{5}$)

conjecture

For any natural k there exists a N such that for all $n>N$, make10 $\left(\left[n^{k},(n+1)^{k},(n+2)^{k},(n+3)^{k}\right]\right)$ is impossible.

Conclusion

Children's game to improve mental arithmetic

Study how to make10 with longer sequences

How to prove make10 is impossible?

Computer-assisted proofs

59

```
import Base.show
const RATIONAL = false
divide(x, y) = RATIONAL ? x // y : x / y
const OPERATORS = [
    ((x, y) -> x + y, '+', false),
    ((x, y) -> x - y, '-', false),
    ((x, y) -> y - x, '-', true),
    ((x,y) >> x * y, '*', false),
    ((x, y) -> divide(x, y), '/', false),
    ((x, y) -> divide(y, x), '/', true),
]
const LEAF = '.'
struct Tree{T}
    value::T
    left::Union{Tree{T},Nothing}
    right::Union{Tree{T},Nothing}
    name::Char
end
Tree(x) = Tree(divide(x, one(x)), nothing, nothing, LEAF)
isleaf(x) = x.name == LEAF
```

```
isunit(x) = !in(x.name, ['+', '-'])
const PAREN_TABLE = Dict(
    '+' => Pair((_) -> true, (_) -> true),
    '-' => Pair((_) -> true, isunit),
    '*' => Pair(isunit, isunit),
    '/' => Pair(isunit, isleaf),
)
function show(io::IO, tree::Tree)
    value = if isleaf(tree)
            Int(tree.value)
    else
        left = repr(tree.left; context=io)
        right = repr(tree.right; context=io)
        left_paren, right_paren = PAREN_TABLE[tree.name]
        left_repr = !left_paren(tree.left) ? "($left)" : left
        right_repr = !right_paren(tree.right) ? "($right)" : right
            "$left_repr $(tree.name) $right_repr"
    end
    return print(io, value)
end
function key(nums)
    return Tuple(sort([tree.value for tree in nums]))
end
make10(nums) = make10!(collect(map(Tree, nums)))
```

```
function make10!(nums; cache=Set())
    n = length(nums)
    n == 0 && return nothing
    n == 1 && nums[begin] value == 10 && return nums[begin]
    for i in 1:n
        for j in i:(n - 1)
            for (op, name, flip) in OPERATORS
                    x = popat!(nums, i)
                    y = popat!(nums, j)
                    value = op(x.value, y.value)
                    pushfirst!(nums, Tree(value, flip ? y : x, flip ? x : y, name))
                    k = key(nums)
                    if !in(k, cache)
                        push!(cache, k)
                    rtn = make10!(nums; cache)
                    # no need to maintain the invariant
                    !isnothing(rtn) && return rtn
                    end
                    # restore order
                    popfirst!(nums)
                    insert!(nums, j, y)
                    insert!(nums, i, x)
            end
        end
    end
end
@assert !isnothing(make10([2, 4, 6, 8])) "failed example 1"
@assert !isnothing(make10([6, 2, 4, 5])) "failed example 2"
println(make10([3, 4, 7, 8]))
```

