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Abstract

In this paper, we systematize the conjectures of the TJHSST geosystems text-
book. We solve an elementary linear first-order series of ordinary differential equa-
tions and interpret the solution and its relevance to the study of Earth systems.

1 Introduction

Why do we combine the study of differential equations with the study of the Earth?
Simply put, differential equations provide an elegant model for many natural phenomena.
The link between the two is the study of systems, giving “geosystems” its name.

Because most natural systems are time-dependent, their behavior must be
described by differential equations. Differential equations are beyond the
level of most readers of this book; however, readers who have the required
mathematical background are invited to follow the discussion below.

— L. Kump, J. Kasting, and R. Crane, The Earth System, 3rd ed. 2010

In order to facilitate the connection between differential equations and systems, we in-
troduce a pet two-component system and its corresponding model. Although the system
is simple, it will elucidate general results about the theory of systems and of stability.

Suppose we have a system of two reservoirs whose states (e.g., amounts of
material in the reservoirs) are represented by the variables A(t) and B(t),
which are coupled in a feedback loop. Furthermore, suppose that an equi-
librium state exists in this system, in which the reservoir sizes are denoted
by Aeq and Beq. We are interested in how these reservoirs will respond to a
disturbance from their equilibrium state. This system can be described by
the two following differential equations:

dA/dt = a(B −Beq)

dB/dt = b(A−Aeq)

— [1], page 25
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Note that this system corresponds to our intuition about systems. If B is at equi-
librium, then there is no change in A. If B is greater than the equilibrium, then A will
increase if there is a positive link from B to A, represented by the sign of a. If B is lower,
then A will decrease. The same is true for the connection between A and B.

Here, a and b are constants. The feedback loop is positive if both a and b
are positive or if both constants are negative. If a and b have opposite signs,
the feedback loop is negative. This follows from our definition of positive
and negative couplings. A coupling is positive if component A responds in
the same direction as the perturbation to component B; it is negative if the
response is in the opposite direction.

2 Analysis

Recall we have the system of differential equations:

dA

dt
= a(B −Beq)

dB

dt
= b(A−Aeq)

We first suppose the system starts at some initial time t0 = 0, and that A0 = A(t0)
and B0 = B(t0) representing the initial amounts in each reservoir. We then put the
initial value problem into matrix form, encapsulating both functions into one vector:

~X =

(
A
B

)
, ~X ′ =

(
0 a
b 0

)
~X +

(
−aBeq
−bAeq

)
, ~X(t0) =

(
A0

B0

)
To solve this system, we first ignore the forcing term and solve the resulting homoge-

neous system. To solve the homogeneous system, we find the eigenvalues of the matrix.
Looking at the characteristic equation:

det(A− λI) =
∣∣∣∣−λ a
b −λ

∣∣∣∣ = λ2 − ab = 0 =⇒ λ = ±
√
ab

Letting α =
√
ab, λ = ±α

We now assume ab ≥ 0, that is, α is real and the system represents a positive feedback
loop. We will see what happens in the negative case later.

For λ1 = α, we find its associated eigenvector:(
−α a
b −α

)
~K1 = ~0→ −αk1 + ak2 = 0→ k1 =

ak2
α

Because a
α = a√

ab
=
√
a√
b
, let β =

√
a
b so k1 = βk2. Taking k2 = 1,

~K1 =

(
β
1

)
so ~X1(t) =

(
β
1

)
eαt
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Similarly, for λ2 = −α:(
α a
b α

)
~K1 = ~0→ αk1 + ak2 = 0→ k1 = −

ak2
α

= −βk2

Taking k2 = 1 again,

~K2 =

(
−β
1

)
so ~X2(t) =

(
−β
1

)
e−αt

The complementary solution to the homogenous equation is therefore

~Xc(t) = c1

(
β
1

)
eαt + c2

(
−β
1

)
e−αt

We now solve for a particular solution by the method of undetermined coefficients.

Because the forcing term is a constant vector, we assume the form ~Xp =

(
E
F

)
, where E

and F are “undetermined coefficients”, or constants whose values will be determined by
the differential equation.

~X ′p =

(
0 a
b 0

)
~Xp +

(
−aBeq
−bAeq

)
Because the derivative of a constant vector is ~0,

~0 =

(
0 a
b 0

)(
E
F

)
+

(
−aBeq
−bAeq

)
~0 =

(
aF
bE

)
+

(
−aBeq
−bAeq

)
This yields the system{

a(F −Beq) = 0

b(E −Aeq) = 5
=⇒ F = Beq

E = Aeq

so

~Xp =

(
Aeq
Beq

)
This makes sense because if both reservoirs are at equilibrium, then the differential

equation is trivially satisfied because there is no change in the system.

The general solution is therefore
~X = ~Xc + ~Xp

~X(t) = c1

(
β
1

)
eαt + c2

(
−β
1

)
e−αt +

(
Aeq
Beq

)
Using the initial conditions to solve for c1 and c2,

~X(0) = c1

(
β
1

)
+ c2

(
−β
1

)
+

(
Aeq
Beq

)
=

(
βc1 − βc2 +Aeq
c1 + c2 +Beq

)
~X(0) =

(
βc1 − βc2 +Aeq
c1 + c2 +Beq

)
=

(
A0

B0

)
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Subtracting the equilibrium amounts, let’s let Ad = A0 −Aeq and Bd = B0 −Beq.{
βc1 − βc2 = Ad

c1 + c2 = Bd

Multiplying the second row by β and adding the two equations to cancel c2,
2βc1 = Ad + βBd

c1 =
Ad + βBd

2β
Solving for c2,

c2 = Bd − c1

=
2βBd
2β

− Ad + βBd
2β

=
−Ad + βBd

2β
At last, the final solution is

~X(t) =

(
Ad + βBd

2β

)(
β
1

)
eαt +

(
−Ad + βBd

2β

)(
−β
1

)
e−αt +

(
Aeq
Beq

)
Explicitly writing out A and B,

A(t) =

{
Ad + βBd

2

}
eαt +

{
Ad − βBd

2

}
e−αt +Aeq

B(t) =

{
βBd +Ad

2β

}
eαt +

{
βBd −Ad

2β

}
e−αt +Beq

The book actually has a typo for A! They have A0 − βB0 as the numerator for both
fractions, when it should be A0+βB0 for the first fraction (what I call Ad they call A0).

The solution to these two coupled differential equations can be shown to be

A(t)−Aeq =

{
(A0 − βB0)

2

}
exp(αt)

+

{
(A0 − βB0)

2

}
exp(−αt)

Here, A0 and B0 are the amounts that A and B are disturbed from their
equilibrium values at the initiation of the disturbance, and α =

√
ab and

β =
√

a
b . The second term on the right-hand side has a negative exponent

and thus decays with time, but the first term has a positive exponent and
thus will increase without limit if α is a real number. Thus, if the product
ab is positive, as it must be for a positive feedback loop, the system is clearly
unstable.

We continue our analysis, now on the case where ab < 0, that is, α is imaginary and
the system represents a negative feedback loop. Recall the eigenvalues of the matrix were
λ = ±

√
ab. If ab < 0, then let α =

√
−ab to make α real again, making λ = ±iα.
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For λ = iα, we find its associated (complex) eigenvector:(
−iα a
b −iα

)
~K = ~0→ −iαk1 + ak2 = 0→ k1 =

ak2
iα

= −i a
α
k2

where we multiply by i on top and bottom to move i to the numerator. We introduce β
again, but we have to be very careful how we define β in a complex space. Without loss
of generality, let a > 0 and therefore b < 0. β =

√
−a
b , and

a
α =

√
a
√
a√

a
√
−b = β. Since we

assume a is positive, we can decompose it. Finally, k1 = −iβk2. Taking k2 = 1,

~K =

(
−iβ
1

)
=

(
0
1

)
+ i

(
−β
0

)
Using the technique proved in the appendix, section 4.1, we don’t need to find the
other eigenvector and can instead directly compute the two solutions from the real and
imaginary parts of the eigenvector.

~X1 =

[(
0
1

)
cosαt−

(
−β
0

)
sinαt

]
e0t =

(
β sinαt
cosαt

)
~X2 =

[(
−β
0

)
cosαt+

(
0
1

)
sinαt

]
e0t =

(
−β cosαt
sinαt

)
The general solution is then

~X = c1

(
β sinαt
cosαt

)
+ c2

(
−β cosαt
sinαt

)
+

(
Aeq
Beq

)
where we make use of the same particular solution as the positive feedback case. Solving
for the constants by making use of the initial conditions,

~X(0) =

(
−βc2
c1

)
+

(
Aeq
Beq

)
=

(
A0

B0

)
Moving the equilibrium sizes to the other side again,{

− βc2 = Ad

c1 = Bd
=⇒

c1 = Bd
c2 = −Ad

β

Plugging back into ~X,

~X = Bd

(
β sinαt
cosαt

)
− Ad

β

(
−β cosαt
sinαt

)
+

(
Aeq
Beq

)
A(t) = Ad cosαt+ βBd sinαt+Aeq

B(t) = Bd cosαt−
Ad
β

sinαt+Beq

Because both A(t) and B(t) are a linear combination of sines and cosines, they can
be written as a single sine function with the same frequency of α and a certain fixed
magnitude and phase. Thus, the magnitudes of A and B are bounded above by the
magnitude of that wave plus Aeq or Beq, and below by the negative magnitude of the
wave plus the same equilibrium size. For more details, consult section 4.5 of the appendix.
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We finish with the last statement on the page.

When a and b have opposite signs, though, as they do in a negative feedback
loop, then the product ab is negative. The square root of a negative number
is imaginary, so α is no longer a real number. In such a case, the system
becomes a sinusoidal oscillator. The solution is always bounded, however,
thus demonstrating that negative feedback loops are stable.

Our job is not quite done, however. Notice how β =
√

a
b . Clearly, this poses a problem

if b = 0, and by symmetry, a = 0 is also bad—these cases are “degenerate”.
If a = 0 and b = 0, the reader can confirm for themselves that both the positive

and negative feedback loop solutions “do the right thing” and reduce to two constant
solutions A(t) = A0 and B(t) = B0 which trivially satisfy the differential equations.

If exactly one of a or b is 0, assume b = 0 and therefore a 6= 0 without loss of
generality. We could proceed with eigenvalue analysis as usual, discovering that λ = 0
is the only eigenvalue, and is “defective” in the sense that it has multiplicity 2 but only
one associated eigenvector. We could handle this using a polynomial form, successively
generating solutions via this sole eigenvector. See section 4.3 of the appendix for details.
However, the system can be much more easily solved with ad-hoc analysis. Since b = 0,
dB
dt = 0 so B(t) is a constant function, whose value must be B0 to satisfy the initial
condition. dA

dt then equals a(B−Beq) = aBd. Integrating on both sides, A(t) = aBdt+C,
and C must be A0 to satisfy the initial condition. So A(t) = aBdt+A0 and B(t) = B0,
which means A grows without bound, but much slower than an exponential function.

3 Conclusion

We have rigorously computed the solution to the differential equation, correcting the
mistakes of the geosystems textbook and extending to the complex and degenerate cases.
Positive feedback loops happen when both couplings are positive or both are negative,
while negative feedback loops happen when one is positive and the other is negative. We
have seen the mathematical result of a positive feedback loop; the amount of material
grows exponentially as both feed into each other. In a negative feedback loop, in contrast,
the system oscillates perpetually, but is always stable, as its deviation from equilibrium
is bounded. Future work can be done in extending this intuition to multiple couplings,
where positive feedback loops happen if the number of positive coupling is even. Negative
feedback loops, by process of elimination, must happen when the number is odd. Work
can also be done in more complicated systems—for example, when the sign of a coupling
is itself dependent on the state of the system, so an initially negative feedback loop can
turn into a positive feedback loop with an external forcing (refer to the Daisyworld lab).
These systems often cannot be solved analytically, necessitating a numerical approach.
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4 Appendix

4.1 Conjugate Eigenvalues and Eigenvectors

Let λ = α+ iβ be a complex eigenvalue of the coefficient matrix A in the homogeneous
system ~X ′ = A ~X and let ~K be a (complex) eigenvector associated with λ. Also let
~u1 = Re( ~K) and ~u2 = Im( ~K) such that ~K = ~u1 + i ~u2.

Also let λ = α − iβ be the conjugate eigenvalue of λ. We first prove that the
eigenvector of λ is the conjugate of ~K, or ~K = ~u1 − i ~u2.

Because ~K is the eigenvector of λ by definition,

A ~K = λ ~K

Expanding on the left side,
A ~K = A( ~u1 + i ~u2)

= A~u1 + iA ~u2

Expanding on the right side,
λ ~K = λ( ~u1 + i ~u2)

= (α+ iβ)( ~u1 + i ~u2)

= (α ~u1 − β ~u2) + i(β ~u1 + α ~u2)

Setting real and imaginary parts equal,
A~u1 = α ~u1 − β ~u2 and A~u2 = β ~u1 + α ~u2

We now compute λ ~K which should be equal to A ~K if ~K is an eigenvector of λ.

λ ~K = (α− iβ)( ~u1 − i ~u2)
= (α ~u1 − β ~u2) + i(−β ~u1 − α ~u2)

Using A~u1 and A~u2 computed earlier,
= A~u1 − iA ~u2
= A( ~u1 − i ~u2)

= A ~K �

4.2 Real Solutions

We have two eigenvalues λ and its conjugate λ and we have the two associated eigenvec-
tors ~K and its conjugate ~K.

Thus, the two (complex) solutions are ~Keλt and ~Keλt. We want to write these two
solutions in terms of reals, which is possible because we are allowed to arbitrarily linearly
combine the two solutions by the superposition principle.

7



We first explicitly write out each solution in terms of ~u1 and ~u2.

~Keλt = ( ~u1 + i ~u2)e
(α+iβ)t

= [ ~u1e
iβt + i ~u2e

iβt]eαt

Using Euler’s formula eix = cosx+ i sinx (a proof appears in the appendix, section 4.4),
= [ ~u1(cosβt+ i sinβt) + i ~u2(cosβt+ i sinβt)]eαt

Seperating real and imaginary parts,
= [( ~u1 cosβt− ~u2 sinβt) + i( ~u1 sinβt+ ~u2 cosβt)]e

αt

We now do the same for the other solution.

~Keλt = ( ~u1 − i ~u2)e(α−iβ)t

= [ ~u1e
−iβt − i ~u2e−iβt]eαt

Because cos(−x) = cosx and sin(−x) = − sinx,
= [ ~u1(cosβt− i sinβt)− i ~u2(cosβt− i sinβt)]eαt

Beware of the sign on the ~u2 sinβt term!
The two negative signs from each conjugation cancel:

= [( ~u1 cosβt− ~u2 sinβt)− i( ~u1 sinβt+ ~u2 cosβt)]e
αt

To summarize,

~Keλt = [( ~u1 cosβt− ~u2 sinβt) + i( ~u1 sinβt+ ~u2 cosβt)]e
αt

~Keλt = [( ~u1 cosβt− ~u2 sinβt)− i( ~u1 sinβt+ ~u2 cosβt)]e
αt

We notice we can cancel the imaginary parts if we add them up:

1

2
( ~Keλt + ~Keλt) =

1

2
[2( ~u1 cosβt− ~u2 sinβt)]e

αt

~X1 = [ ~u1 cosβt− ~u2 sinβt]e
αt

We notice we can cancel the real parts if we take the difference, and to make it real
we can simply multiply it by a factor of i.

−i
2
( ~Keλt − ~Keλt) =

−i
2
[2i( ~u1 sinβt+ ~u2 cosβt)]e

αt

~X2 = [ ~u2 cosβt+ ~u1 sinβt]e
αt �

8



4.3 Defective Eigenvalues

Let λ be an defective eigenvalue with multiplicity m, with a single eigenvector by defini-
tion. Then each solution is of the form:

~Xm = ~K1
tm−1

(m− 1)!
eλt + ~K2

tm−2

(m− 2)!
eλt + · · ·+ ~Kme

λt

Proof. Inductive sketch. For ~Xm to be a valid solution, it must satisfy ~X ′m = A ~X.

~X ′m = ~K1
tm−2

(m− 2)!
eλt + ~K2

tm−3

(m− 3)!
eλt + · · ·+~0

+ ~K1
tm−1

(m− 1)!
λeλt + ~K2

tm−2

(m− 2)!
λeλt + · · ·+ ~Kmλe

λt

By the inductive hypothesis, the top is ~Xm−1:
= ~Xm−1 + λ ~Xm

This must be equal to A ~Xm, so

~Xm−1 + λ ~Xm = A ~Xm

or, moving λ ~Xm to the right side,
(A− λI) ~Xm = ~Xm−1

We need to show this system is solvable, and the easiest way to do that is to write it in
terms of ~K1 . . . ~Km first and then reconstruct the solutions ~X1 . . . ~Xm.

(A− λI)( ~K1
tm−1

(m− 1)!
eλt+ ~K2

tm−2

(m− 2)!
eλt + ~K3

tm−3

(m− 3)!
eλt + · · ·+ ~Kme

λt) =

~K1
tm−2

(m− 2)!
eλt + ~K2

tm−3

(m− 3)!
eλt + · · ·+ ~Km−1e

λt)

Because ~Xm is one degree higher than ~Xm−1, ~K1 has no correspondence, so we have
(A− λI) ~K1 = ~0

(A− λI) ~K2 = ~K1

. . .

(A− λI) ~Km = ~Km−1

By induction, we can assume ~K1 . . . ~Km−1 exist because the solution ~Xm−1 exists.
We therefore just need to show that (A − λI) ~Km = ~Km−1 has a solution, which is left
as an exercise to the reader. �
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4.3.1 Defective Eigenvalues in the Degenerate Case

Recall we are trying to solve the system where a 6= 0 and b = 0. We proceed with
eigenvalue analysis, where the characteristic equation is:

det(A− λI) =
∣∣∣∣−λ a
0 −λ

∣∣∣∣ = λ2 − 0 = 0 =⇒ λ = 0

We proceed to find the sole eigenvector for the sole eigenvalue.(
0 a
0 0

)
~K = ~0→ ak2 = 0 =⇒ k2 = 0, k1 free

Taking k1 = 1,

~K =

(
1
0

)
so ~X1(t) =

(
1
0

)
e0t =

(
1
0

)
We now solve for ~P , which satisfies (A− λI)~P = ~K:(

0 a
0 0

)
~P = ~K(

0 a
0 0

)(
p1
p2

)
=

(
1
0

)
→ ap2 = 1 =⇒ p2 =

1

a
, p1 free

Taking p2 = 0 for simplicity,

~P =

(
0
1
a

)
so ~X2(t) =

[(
1
0

)
t+

(
0
1
a

)]
e0t =

(
t
1
a

)
The general solution is therefore

~X = c1 ~X1 + c2 ~X2 + ~Xp

~X = c1

(
1
0

)
+ c2

(
t
1
a

)
+

(
Aeq
Beq

)
where we used the standard particular solution. Making use of the initial conditions,

~X(0) =

(
c1
0

)
+

(
0

1
ac2

)
+

(
Aeq
Beq

)
=

(
A0

B0

)
{

c1 = Ad
1
ac2 = Bd

=⇒ c1 = Ad
c2 = aBd

Plugging back into ~X,

~X = Ad

(
1
0

)
+ aBd

(
t
1
a

)
+

(
Aeq
Beq

)
A(t) = aBdt+A0

B(t) = B0

Luckily, this agrees with our ad-hoc analysis. However, this method for this particular
set of equations is clearly much more tedious than simply solving with separation.
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4.4 Euler’s Formula

Theorem 4.1. eix = cosx+ i sinx, i.e. Euler’s formula

Proof. We have the initial value problem (IVP)

dy

dx
= f(x, y), y(x0) = y0

Picard’s existence and uniqueness theorem says that if f and ∂f
∂y are continuous functions

on some rectangle R that contains (x0, y0), then the IVP has an unique solution on some
interval I whose bounds are the regions where the hypotheses hold.

In our particular case, we have f(x, y) = iy and y(0) = 1, so ∂f
∂y = i. By Picard’s

theorem, the IVP has a unique solution on the interval I where y is continuous and ∂f
∂y is

continuous. i is continuous everywhere, so the IVP will have an unique solution wherever
y is continuous.

Because this differential equation is separable, we can directly solve for y.

dy

dx
= iy∫

1

iy
dy =

∫
dx

1

i
ln |iy| = x+ C

ln |iy| = ix+ C

iy = Ceix

y = Ceix

Taking into account the initial condition, y(0) = 1 = Ce0 = C. So y = eix, which is
continuous on R. Picard’s theorem therefore guarantees the uniqueness of this solution.
However, note that cosx+ i sinx is also a solution to the IVP. First, it fulfills the initial
condition since y(0) = cos 0 + i sin 0 = 1. Second, it fulfills the differential equation:

dy

dx
= − sinx+ i cosx

= i2 sinx+ i cosx Definition of i
= i(cosx+ i sinx)

= iy

Since eix is the unique solution to the IVP on R, eix = cosx+ i sinx. �
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4.5 Linear Combination of Sines and Cosines

Suppose we have a function in the form f(t) = c1 cos(ωt) + c2 sin(ωt). Can rewrite f to
be of the form A sin(ωt+ δ), i.e. as a sin function with the same frequency, but with a
certain magnitude and phase? Using the identity sin(x+ y) = sinx cos y + cosx sin y,

A sin(ωt+ δ) = A sin(ωt) cos δ +A cos(ωt) sin δ = (A sin δ) cos(ωt) + (A cos δ) sin(ωt)

From this c1 = A sin δ and c2 = A cos δ, so

A2 sin2 δ +A2 cos2 δ = c21 + c22 =⇒ A =
√
c21 + c22

Finally,

c1 = A sin δ → sin δ =
c1
A

=⇒ δ = arcsin

(
c1√
c21 + c22

)
= arctan

(
c1
c2

)
where the last step comes from the right triangle with opposite side c1, adjacent side c2,
and hypotenuse

√
c21 + c22. We can therefore write f(t) =

√
c21 + c22 sin

(
ωt+ arctan

(
c1
c2

))
.
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