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1 Introduction

Discord is a popular messaging platform whose API is very useful, allowing many users
to create “bots”. These bots automate interactions with Discord users through text and
other means to perform a specific function. Among these bots is Mudae, which allows
the user to play a simple game. One types in the $wa command to “roll”, which instructs
Mudae to show a random character from television shows. One can then “claim” a
character, which means they now have possession of the character. Note that one can
roll 10 times per hour, but only claim once per 3 hours. Thus, there are 30 rolls per
claim, and it is impossible to know a prori when to stop rolling and settle on a character.

Each character has a kakera value , which is an objective determination of value
irrespective of the emotional value one might attach to their favorite characters. Thus,
our discussion centers around maximizing kakera. Suppose one rolls a 100 kakera value
character. Should they stop rolling and claim this character, or continue rolling in hope
of getting a higher value later? To answer this central question, we must use the methods
of probability theory to analyze the kakera distribution. 1

Figure 1: An example roll. The charac-
ter name (Dodonko) is at the top, and
the show they are from under it (Kono-
Suba). The number left of the crystal
icon indicates the kakera value, in this
case 54. One clicks the heart icon under
the Mudae modal to claim the character.

1This problem is very similar to the secretary problem, described in the appendix, subsection 9.1.
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2 Probability Theory

If you are already familiar with the basic concepts of probability theory, e.g. random
variables, PMFs, CMFs, expected value, and variance, feel free to skip to the next section.

2.1 Basic Definitions

Definition 2.1. A random variable (r.v.) is formally a function assigning a value to an
outcome, but can more intuitively be thought of as a “dispenser” of random values. We
will denote random variables as a single uppercase letter, e.g. X or Z.

A random variable is continuous if it dispenses infinite possible values (e.g. a random
number between 0 and 1) and discrete if it dispenses a finite number of possible values
(e.g. a coin). We are dealing with a discrete space—the kakera values are integer and
vary between 32 and 1239, so we will focus on discrete random variables.

Definition 2.2. A probability mass function (PMF) gives the probability that a random
variable dispenses a value. We will denote a PMF associated with the random variable
X as fX(x), which gives the probability of the event x happening, p(X = x).

Definition 2.3. The cumulative mass function (CMF) gives the probability that a ran-
dom variable dispenses a value less than or equal to a given value. We will denote a CMF
associated with the random variable X as FX(x), which gives p(X ≤ x).

Definition 2.4. The expected value is what we “expect” a random variable to dispense
over many samples, or the average value. One way to compute this is:

E[X] =
∑
x∈X

xp(x)

or each value times the probability it occurs. The strong law of large numbers gives
formal proof for why sampling a random variable and averaging the results converges to
the expected value, but is beyond the scope of this paper. We also denote the expected
value as µ, like an average.

Theorem 2.1. E[f(X)] =
∑

x∈X f(x)p(x), i.e. the expected value of a transformation
of a discrete random variable.

Proof. Suppose f is a one-to-one or bijective mapping. Intuitively, f(x) can only be
dispensed in the transformed r.v. if x was dispensed in the original r.v., so the probability
that f(x) occurs is the probability that x occurs. Its value is still f(x), so the sum
f(x)p(f(X) = f(x)) becomes f(x)p(x). Now we see what happens if f is not bijective,
or if different values are mapped to the same value after the transformation. Then the
probability of f(x) occurring is the probability that any of x1, x2, . . . , xn occur, if each
f(xi) = f(x). Since each distinct xi forms non-overlapping cases, the probability f(x)
occurs is the sum of their probabilities. Therefore f(x) “contributes” f(x)p(f(X)) =
f(x)(p(x1) + p(x2) + · · · + p(xn)) = f(x)p(x1) + f(x)p(x2) + · · · + f(x)p(xn) to the
expected value, which is accounted for in the sum of f(x)p(x) over each value of X. �
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Corollary 2.1.1. The linearity of expectation, i.e.

1. E[X + Y ] = E[X] + E[Y ] for random variables X,Y

2. E[cX] = cE[X] for c ∈ R

Proof.

E[X + Y ] =
∑
x∈X

∑
y∈Y

(x+ y)p(X = x, Y = y)

=
∑
x∈X

∑
y∈Y

xp(X = x, Y = y) +
∑
x∈X

∑
y∈Y

yp(X = x, Y = y)

Since interchanging the order of the summations just changes the order of addition, we
can interchange on the right term while factoring out the x and y terms:

=
∑
x∈X

x
∑
y∈Y

p(X = x, Y = y)

︸ ︷︷ ︸
p(X=x)

+
∑
y∈Y

y
∑
x∈X

p(X = x, Y = y)︸ ︷︷ ︸
p(Y=y)

=
∑
x∈X

xp(x) +
∑
y∈Y

yp(y)

= E[X] + E[Y ]

We use the transformation f(x) = cx with our previous theorem:

E[cX] =
∑
x∈X

(cx)p(x)

= c
∑
x∈X

xp(x)

= cE[x] �

Definition 2.5. The variance is the expected squared deviation from the expected value.
The larger the variance, the more “variable” the random variable is. By definition,

Var[X] = E[(X − E[X])2]

We also denote the variance as σ2, since it is the square of the standard deviation σ.

Theorem 2.2. Var[X] = E[X2]− E[X]2, a more convenient way to calculate variance.

Proof.

Var[X] = E[(X − E[X])2] By definition

= E[X2 − 2X E[X] + E[X]2]

= E[X2]− E[2 E[X]X] + E[E[X]2] Linearity of expected value

= E[X2]− (2 E[X]) E[X] + E[X]2 Expectation of a constant is constant

= E[X2]− E[X]2 �
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2.2 Computational Representation

We now represent these concepts with a computer. Many of the concepts will be language-
agnostic, but for practical purposes I will describe everything in terms of the high-level
programming language Python. All code can be found at my GitHub repository.

2.2.1 Random Variables and the PMF

We will represent a random variable as two lists, one holding the values and the other
their corresponding probabilities. We make sure the value list is sorted, and for a given
index i its value is X[i] and its PMF is p[i] for the tuple of lists (X, p).

an example random variable
X = [ 1, 5, 10, 15, 16, 20, 30, 35, 50, 100]
p = [0.05, 0.08, 0.1, 0.12, 0.17, 0.22, 0.1, 0.1, 0.05, 0.01]

We now show the PMF function, as opposed to the PMF list. The PMF list maps
index to probability, but we often want value to probability. In order to do this efficiently,
we can pre-compute a dictionary mapping value to index and then simply lookup the
index in the PMF list, a total query time of O(1). If the value isn’t in the dictionary,
then it does not occur in X and thus has a probability of 0.

pmf function
D = {x: i for i, x in enumerate(X)} # value to index

def pmf(p: list, u: float) -> float:
""" Finds the pmf at a value in or not in the underlying r.v. """
return p[D[u]] if u in D else 0

2.2.2 The CMF

With the PMF complete, we analyze the CMF. The CMF of an index is simply the sum
of the probabilities up to and including that index. Similar to the PMF, we can make
our queries more efficient if we do some pre-computation.

Consider the problem of finding the area under the curve for a function f(x) between
the points x = a and x = b. We do not need to integrate again for two different points!
We can simply do one indefinite integral, F (x) =

∫
f(x)dx, and use this function F

to compute the area: F (b) − F (a). One way to think about this is to imagine the
function F (x) as the area between a hypothetical point x = c to x. This point might not
actually exist, but as an example take the line f(x) = x. Its integral is F (x) = 1

2x
2, and

because F (0) = 0 we can imagine F (x) as giving the area between x = 0 and x (since∫ x
0 f(t)dt = F (x)−F (0) = F (x)). Thus, if we want to find the area under curve between
x = a and x = b, then F (b) gives the area from 0 to b, and subtracting F (a) will remove
the area from 0 to a, leaving the area between a and b.
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We can apply a similar logic to the discrete case. Instead of the integral being our
accumulation function, we define the prefix sum , a list of length n + 1 that holds the
sum of each prefix of the original list. If we want the prefix sum of the list p, then the
first value is 0, the second p[0], the third p[0] + p[1], the fourth p[0] + p[1] + p[2], and
so on. In general, the ith index of the prefix sum gives sum(p[:i]), hence “prefix sum”
(each element holds the sum of the ith prefix). The sum between two indexes i and j,
inclusive on both ends, can then be computed in O(1) by F [j + 1]−F [i]. Note that this
is very similar to the integral: F (b)− F (a), hence the nickname “discrete integral”.

Algorithm 1 Prefix sum of a list
def query(prefix: list, i: int, j: int) -> float:

""" Finds the sum of a list between two indexes. """
return prefix[j + 1] - prefix[i]

def prefix_sum(l: list) -> list:
""" Returns the prefix sum of l. """
prefix = [0]*(len(l) + 1)
for i in range(len(l)):

prefix[i + 1] = prefix[i] + l[i]
return prefix

To find the CMF of a value x, we first find its index i with the dictionary D like the
PMF. We then return F [i + 1], since we want to include the probability corresponding
to x (CMF is less than or equal). Unlike the PMF, the CMF takes nonzero values for
x not in the range of the random variable. In that case, we must find the largest index
corresponding to a value less than or equal to x and then add 1 like the previous case.
Equivalently, we can simply find the smallest index corresponding to a value strictly
greater than x, and use that since the prefix sum will not include it. Since our random
variable has its values in sorted order, we can do this search efficiently with binary search,
through Python’s bisect module. Thus, our final algorithm is O(1) for values in the range
and O(log n) for values not in the range.

cmf function
def cmf(F: list, u: float) -> float:

""" Finds the cmf at a value in or not in the underlying r.v. """
# use F if u is in the support set, otherwise binary search
return F[D[u] + 1] if u in D else F[bisect.bisect(X, u)]

2.2.3 Expectation and Variance

Expectation and variance can be implemented from definition. For expectation, we
include an transformation function whose default value is the identity function f(x) = x.
Thus, E[f(x)] =

∑
x∈X f(x)p(x) = sum(f(X[i])*p[i] for i in range(len(X))).

7

https://docs.python.org/3/library/bisect.html


expectation
def E(p: list, rv: list=X, f=lambda x: x) -> float:

""" Expected value of a pmf represented by a list. """
return sum(f(rv[i])*p[i] for i in range(len(rv)))

For variance, we use the derived definition Var[X] = E[X2]− E[X]2.

variance
def Var(p: list, rv: list=X) -> float:

""" Var[X] = E[(x - u)^2] = E[X^2] - E[x]^2. """
return E(p, X, lambda x: x*x) - E(p, rv)**2

Finally, for standard deviation we simply take the square root of variance.

standard deviation
def std(p: list, rv: list=X) -> float:

""" sigma^2 = Var[x] so sigma = std. dev. = sqrt(Var[X]). """
return math.sqrt(Var(p, rv))

Why use standard deviation instead of variance? One intuitive answer is that the units
for variance is squared, so taking the square root in the standard deviation maintains
the same units as the original data.

2.2.4 Empirical Distributions and Testing Validity

In many situations, we do not know a priori how a discrete distribution behaves and
must figure out the probabilities by doing a frequency count. For example, if we do 103

trials and the value 5 occurs 125 times, then p(X = 5) is roughly 125
1000 = 1

8 . Of course,
this estimate gets better the more trials one does (the variance lowers).

If we have a frequency count of each value, we can normalize it into a PMF by diving
each value by its sum, making the sum of the overall list 1.

normalizing a list into a pmf
def norm(l: list, f: float=None) -> list:

""" Normalizes a list into a pmf by dividing by its sum. """
s = sum(l) if f is None else f
return [x/s for x in l]

Similarly, for a CMF the largest value possible has a CMF of 1 since every value is
less than it. Therefore, we can normalize a list into a CMF by dividing by its max.

normalizing a list into a cmf
def norm_cmf(l: list) -> list:

""" Normalizes a list into a cmf by dividing by its max. """
return norm(l, max(l))
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These normalization methods cannot turn an arbitrary list into a PMF or a CMF, so
we must test whether the resulting list is valid. How do we determine whether a given
list p is a valid PMF? It must have two necessary and sufficient properties: each value is
nonnegative and the sum of the list is 1. In practice, we will not include values with 0
probability and we cannot test whether sum(p) == 1 directly because of numerical error,
we instead determine whether the distance is within a certain tolerance to 1.

valid pmf
def nonneg(l: list) -> bool:

""" Whether all the values in a list are positive. """
return all(map(lambda x: x >= 0, l))

def diff(x: float, y: float, tol: float=EPSILON) -> bool:
""" Whether two numbers are sufficiently close. """
return abs(x - y) < tol

def pmf(l: list, tol: 10**-3) -> bool:
""" Whether a list can be interpreted as a pmf. """
return nonneg(l) and diff(sum(l), 1, tol)

Thus, a random variable (X, p) is valid if X is sorted and p is a valid PMF.

checking the validitiy of a random variable
assert len(X) == len(p), "values not the same length as pmf"
assert sorted(X) == X, "support set must be sorted"
assert pmf(p), "not a valid pmf"

To test whether a CMF is valid, we need it to fulfill three properties: each value must
be nonnegative and monotonically increasing since the CMF is formed from the sum of
the nonnegative PMF, and the last element must be 1 since the largest value is greater
than or equal to all other values.

valid cmf
def cmf(l: list, tol: float=10**-3) -> bool:

""" Whether a list can be interpreted as a cmf. """
return nonneg(l) and l == sorted(l) and diff(l[-1], 1, tol)

2.2.5 Sampling from a Distribution

Our final tool in our growing toolbox is the ability to sample from a random variable.
However, most programming languages only support a uniform random variable (Python
has random.random(), which gives a random number between 0 and 1) and a few others.
We must, therefore, find a way to convert a sample from a uniform random variable into
an arbitrary one. Perhaps it is easier to show the code first, then explain how it works.
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sampling from a random variable
def sample(p: list) -> float:

""" Samples a value from a random variable. """
r = random.random()
i = cmf = 0
while i < len(p) - 1:

cmf += p[i]
if r < cmf:

break
i += 1

return i

Claim: This function has the same CMF as the underlying probability distribution.
For a uniform random variable X ∼ [0, 1], the cumulative distribution function or the
probability X is less than some value x is p(X ≤ x) =

∫ x
0 1dt = x. sample will output an

index ≤ j if the sum of the probabilities up to j is greater than X, triggering the break.
Flipping the inequality, if X is less than the sum then sample outputs an index ≤ j:

p(sample ≤ j) = p(X ≤
j∑

i=0

p[i]) =

j∑
i=0

p[i]

Recall that this is the prefix sum, the CMF of a discrete random variable. Thus,
sample has the same CMF as underlying random variable, and because the PMF can be
uniquely recovered from the CMF, it must have the same PMF. If it has the same PMF,
then this is “sampling the probability distribution” represented by p by definition!

Another, more general, way to think about the same thing is to consider sample as
finding the inverse of the CMF. This inverse is not too well-defined in a discrete setting;
we can perhaps consider it as giving the smallest value x such that F (x) is greater than
X. In a continuous setting, this would be simply F−1(x), hence “inverse”. The CMF of
sample is then p(sample ≤ x) which is p(F−1(X) ≤ x), or the inverse CMF applied to the
random variable X. The key observation is that the CMF is monotonically increasing,
which by definition means that if a ≤ b, then F (a) ≤ F (b). We can therefore apply F
on both sides of the inequality while preserving it because of monotonicity. The CMF of
sample is then p(X ≤ F (x)), which is the CDF of X, FX(F (x)). Because X is a uniform
random variable, this is simply F (x) and we arrive at the conclusion sample has the same
CMF as the underlying random variable again. This proof is more formal however, and
clearly generalizes much easier to continuous random variables. For more information on
the “inverse CDF technique” or the “CDF of CDFs” trick, see the Wikipedia article.

This inverse technique is more than just a mathematical trick; we will use it to derive
a faster algorithm. Notice that the CMF as a prefix sum list is a mapping from index to
probability value, and we want the inverse mapping from (uniform) probability value to
index. This is just binary search again! We again find the smallest index i that is larger
than our random sample, and use it to index the random variable list X to get a value
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(not to be confused with the uniform random variable). We have to index X at i − 1
because the prefix sum has 1 larger indexes (the index n in the prefix sum corresponds
to the element n− 1, and so on). This gives a O(log n) algorithm instead of O(n).

Algorithm 2 Sampling from a random variable in O(log n)

def sample(X: list, F: list) -> float:
""" Samples a value from a random variable. """
p = random.random()
return X[bisect.bisect(F, p) - 1]

3 Mudae Models

3.1 Initial Model

We now resume our analysis of the original Mudae game. The first step is to get data,
so we know what the kakera random variable is. This was done by Luke Thistlethwaite
and Avik Rao, and generously provided to me. See Luke’s repository here. Note that
the data is dependent on the Discord server as well as the time of scraping (along with
other, unknown, factors), so to exactly replicate my results you must use my data.

Figure 2: The kakera distribution. Large right skew—perfect for gamblers.

The data is of the form (X, p) as previously described. We now consider the optimal
rolling strategy, answering the question posed in the introduction, section 1. Suppose we
roll a character worth 100 kakera and we have 16 rolls left. Should we claim or continue
rolling? The insight is that we can assume the value of the 16 rolls is going to be the
expected value of those rolls, which is true over a large number of samples. If we therefore
compute the expected value for 1 roll left, 2 rolls left, and so on until 30 rolls left, we
can get cutoff values for each roll. If the expected value of 16 rolls is 120, then we
should continue rolling. If the expected value is 80, then we should claim the 100 kakera
character and stop rolling. We now see how to efficiently compute these expected values.
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The overarching technique is known as “dynamic programming”, covered in many
Senior Computer Team lectures. We need not give such a formal description, however, it
is simpler to describe the technique as “reducing the problem into smaller subproblems”.
Suppose we have 0 rolls left. Then the expected value is 0, since we can’t gain kakera if
we can’t roll. If we have 1 roll left, then the expected value is just the expected value
of the kakera random variable, which we call X. The interesting case comes in when we
have 2 rolls left. Since we know the value of 1 roll left is E[X], then if we roll a character
greater than the cutoff, we keep it, and if we roll less than the cutoff, we continue rolling
and keep the E[X] value of 1 roll left. Thus, the expected value for 2 rolls is going to be
a “capped” expected value sum where the value of x is the maximum between x and the
previously computed value of having one less roll. If we call the random variable with r
rolls left Xr, then we have a recurrence relation:

E[Xr] = E[max(X,E[Xr−1])] =
∑
x∈X

max(x,E[Xr−1])p(x)

Of course, for any recurrence relation we need a base case, and we already found it:
E[X0] = 0. It can be verified that the relation gives E[X1] = E[X] because we assume
kakera values are necessarily positive.

We now use dynamic programming to compute these expected values quickly. If we
used the recurrence relation naively, to compute E[Xr] we must do r steps down to E[X0].
However, note that in doing so we compute each E[X0],E[X1], . . . ,E[Xr]. Thus, if we
repeatedly query E[Xr] (as we do while rolling), then we can store each intermediate
result and simply recall the stored value when the user requests it. This storage could be
done with a list, but is also elegantly done with Python’s lru_cache from the functools
module, a technique called “memoization”. We therefore do at most rmax iterations of
the expected value summation, where rmax = 30.

Algorithm 3 Capped expected value
def capped(X: list, p: list, u: float) -> float:

""" Returns E[X], but with the values capped at a minimum of u. """
return E(p, X, lambda x: max(x, u))

@lru_cache(maxsize=None)
def Er(X: list, p: list, r: int) -> float:

""" E[X_r], where X_r is X with possibly r more samples. """
# if r = 0, then we're out of samples and has a constant value of 0
return 0 if r <= 0 else capped(X, p, Er(i, r - 1))

Finally, we show how to speedup the capped function. The observation is that since
the X list is sorted, there is some index i such that every index less than i has a value
less than or equal to E[Xr−1], and every index greater than or equal to i has a value
greater than E[Xr−1]. We can therefore partition X into two halves like in quicksort; in
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the left half we use the value E[Xr−1] and in the right we use the original value:
i−1∑
j=0

E[Xr−1]p(xj) +
n∑

j=i

xjp(xj)

= E[Xr−1](p[0] + p[1] + · · ·+ p[i− 1]) +
n∑

j=i

xjp(xj)

Notice that F [i] = p[0]+p[1]+ · · ·+p[i−1] and that the right hand side is simply a suffix
sum of the expected value. We can therefore also run a prefix sum on the expected value
to efficiently calculate it, since the prefix sum gives the sum between any two indexes.

fast capped
# expected value prefix sum
ev = prefix_sum([X[i]*p[i] for i in range(N)])

def capped(X: list, F: "cmf", prefix: list, u: float) -> float:
""" Returns E[max(X, u)] in O(log n). """
i = bisect.bisect(X, u)
return u*F[i] + query(prefix, i, N - 1)

The exact distinction of less than or equal to will not be relevant, since if a value x
is exactly equal to E[Xr−1], it does not matter whether it goes into the left or right side.
Our algorithm is now O(log n) per query of Er (amortized), so O(rmax log n) overall.

Armed with this algorithm, we can directly apply it to our data:

Figure 3: Expected value
over increasing rolls.

As expected, the expected value increases sharply in the beginning and gradually
levels off. It will asymptote at the maximum value, but takes many rolls to reach that
state (since the higher kakera characters are so rare).
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3.2 Batching

Satisfied with our initial model, we now successively refine it. The game I presented was
a simplification; in reality one gets 10 rolls per hour, and is able to claim any character
within about a minute. Thus, if someone rapidly runs $wa, they can take their pick of
any of the 10 characters rolled. Assuming the goal is to maximize kakera, they obviously
take the maximum kakera value of those characters.

3.2.1 Derivation of the Max of i.i.d. Random Variables

The probability-theoretic question is as follows: what is the distribution of the max of
n independent and identically distributed (i.i.d.) random variables? As is common in
probability, the easiest way to find the PMF of a discrete random variable is to first find
the CDF of a continuous random variable.

Suppose the random variable X has CDF F (x) and PDF F ′(x) = f(x), and that the
random variable Z = max(X1, X2, . . . , Xn) is the max of n samples of X. We wish to
find the CDF of Z. By definition, the CDF is the probability the random variable is less
than or equal to x. If at least one of the random variables was greater than x, then the
max would be greater. Therefore for the max of the random variables to be less or equal
to x, they all have to be less than or equal to x. Since each has a CDF of F and they
are independent, the probability each is less than x is the product:

p(X1 ≤ x,X2 ≤ x, . . . ,Xn ≤ x) = F (X1)F (X2) . . . F (Xn) = F (X)n

To find the PDF, we can simply differentiate with respect to x, using the chain rule:

g(x) =
dF

dx
= nF (X)n−1f(x)

where g(x) is the PDF of the random variable Z.
We now apply the continuous derivation to the discrete case. While it is true that

G[i] = F [i]n where G is the CMF of Z and F is the CMF of X, we cannot differentiate.
We instead use a “discrete derivative”, or subtract adjacent indexes of G to recover the
PMF g. Since G[i] = g[0] + g[1] + · · · + g[i − 1] and G[i + 1] = g[0] + g[1] + · · · + g[i],
g[i] = G[i + 1] − G[i]. Lastly, we index Z by its n, e.g. Z3 = max(X1, X2, X3). We
therefore compute Z1, Z2, . . . , ZB where B = 10 since we get 10 rolls per “batch”. 2

cmf of Z
Fzs = [[pow(v, b) for v in F] for b in range(B + 1)]

As derived, the PMF of Zb is the adjacent differences of the CMF.

pmf of Z
def fz(z: float, b: int=B) -> float:

""" pmf of Z. """
return Fzs[b][D[z] + 1] - Fzs[b][D[z]]

2Yes, we can avoid the use of pow and shave a log factor by using ZB−1 to compute ZB since
ZB [i] = F [i]ZB−1[i]. Since B = 10 is small, I show the simpler method.
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Note that while we use Python’s builtin pow function, we could implement fast expo-
nentiation ourselves. We want to compute xe where x is a float and e is necessarily an
integer. If we think of the exponent e as a binary number, we can write xe as the product
of x to the power of some powers of 2. The trick is that if we repeatedly square x, we get
powers of 2, e.g. x2, x4, x8, . . .. Thus, we can get to the highest set bit (most significant
bit) of e in O(log e), and by keeping track of the powers we used to get there we can
therefore compute xe in O(log e). There is no reason to use our function, however, since
under the hood Python’s pow uses this technique for integer powers.

Algorithm 4 Fast exponentiation
def exp(b: int, e: int) -> int:

""" Compute b^e in O(log e). """
rtn = 1
while e > 0:

# if bit on in the binary representation of the exponent
if e & 1 == 1:

rtn *= b
e >>= 1
b *= b

return rtn

With the PMF of Z derived, we can visualize it with a graph:

Figure 4: Random variables Z5 and Z10 plotted against X

The effect of the max sharply decreases the peak of the PMF, instead spreading out
the probability mass over the right skew. In general, the distribution is shifted to the
right as expected; a larger batch size will monotonically increase kakera value.
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3.2.2 Naive Implementation

We now apply the derived PMF and CMF of Z to the original problem of determining
when to claim a character. Clearly, we can recycle our original capped expected value.
We simply substitute (ZB, pZB

) for (X, p) and change rmax to 3 since each “roll” (sample
of the random variable) is equivalent to 10 rolls.

Figure 5: Batch size of 1 (previous
model) versus batch size of 10.

As expected, the extra information provided by the ability to choose the largest value
out of a batch of 10 rolls yields a slight advantage over immediately deciding whether or
not to claim after a roll (which can be thought of as a batch size of 1). This advantage
decreases over time as both curves asymptote.

There is one problem, however, and that is our new model only works for rolls that are
a multiple of 10 (since we can only move in samples of Z10). One notices in the graph that
the orange starts under the blue, since it is at 0 for the first 10 rolls. This is a problem
because people do not necessarily roll in perfect batches of 10; one might hypothetically
be too slow or “sell” their rolls to other users after they have claimed, letting another
person claim from their now useless rolls (a practice analyzed in subsection 3.5).

3.2.3 Fractional Batching

We now consider how to extend the previous “batched” model to any number of rolls. If
the number of rolls is not a multiple of 10, we simply use Zr%10 instead of Z10, where %
is the modulo operator, which gives the integer remainder after dividing r by 10. If r is
a multiple of 10, then r%10 is 0 so we must explicitly default to Z10.

Algorithm 5 Fractional batching model
@lru_cache(maxsize=None)
def Ef(r: int, b: int=B) -> float:

""" E[X_r], where Z_r is extended to all r's. """
n = r % b if r % b != 0 else b
return 0 if r <= 0 else capped(Z, Fzs[n], evzs[n], Ef(r - n, b))
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In terms of notation, we denote the random variable with r rolls left as Xr, and E[Xr]
is now computed as shown above, instead of the previous immediate decision method.
Using this more general function, we can correct Figure 5:

Figure 6: Batched model adjusted for fractional batches.

While we are getting a feel for the model, we can also experiment with changing the
batch size while the number of rolls is fixed.

Figure 7: Expected value over increasing batch size, r = 50.

As batch size increases, expected value increases seemingly linearly. The flat part at
the end is because the number of rolls is 50, so a batch size greater than 50 has no effect.
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3.3 Putting it Together

Satisfied with our model, we now create an agent which implements a concrete rolling
strategy according to our theoretical calculations. This will serve three purposes: it is
easier to work with from the perspective of an end user since we are essentially creating
an API, it will force us to somewhat simulate the system so we can use this model for
other downstream purposes, and finally it will let us use code to test whether the math
aligns with reality. Looking towards the future, we will implement one last model in
subsection 3.4 that is a posteriori ; its behavior depends in part on what one actually
rolls. Thus, we need an agent to model such behavior.

Our agent will take R, the maximum number of rolls, and B, the batch size. Because
it will frequently access the expected value cutoffs, we pre-compute these values and store
them. Finally, we will maintain all instance variables in the reset function, which will
allow us to reset the game without needing to create a new object.

init method
class Model():

""" Models interactions with the kakera random variable. """

def __init__(self, R: int=prob.R, B: int=prob.B) -> None:
self.R, self.B, self.offset = R, B, R % B
# precompute list of expected values for each roll
self.E = [prob.Ef(r, B) for r in range(R + 1)]
self.reset()

What attributes are specific to each game? We must know how many rolls we have
left, r. If we are in the middle of a batch, we must know the kakera values of the past
characters rolled which we will store in a list l. It is not strictly necessary but helpful
to maintain the largest kakera value seen so far in a batch, b. Finally, to account for
incomplete batches, we assume that an incomplete batch will be the first to finish, and
then the rest of the batches are complete. Therefore we maintain the size variable,
which tells us how many values the current batch will hold. It is initially offset, defined
in __init__ to be R%B, and if offset is 0, it is the standard batch size B.

reset method
def reset(self) -> None:

""" Reset to the inital model. """
# number of rolls left, list of seen kakera values, best value
self.r, self.l, self.b = self.R, [], float("-inf")
self.size = self.offset if self.offset > 0 else self.B

The single method necessary for the operation of the model is update, which takes
in a kakera value k that represents a roll. If the model decides to claim, it returns the
index of the value in the current batch it wants to claim. Otherwise, it returns None.
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We first determine whether or not the current batch has ended. If it has, we reset l
to a empty list, we set b to −∞, and we set size to B (since we assume the first batch
is the one containing the one possible offset).

We then update the model’s state with the new kakera value. We add k to l, and set
b to max(b, k). We also decrement r since we just used a roll.

With the bookkeeping finished, we are finally ready to determine whether or not to
claim this value (or any value in the current batch). As justified in section 3, we claim
if our current value is larger than the expected value of the number of rolls left, which
is r since we already decremented r. Thus, we compare b to E[Xr]. However, for true
optimality we need another condition. It never makes sense to end a batch midway, since
we can always finish the batch out and then make a decision. This seems to contradict
our algorithm, but it will be resolved in subsection 3.5. In terms of the update function,
however, all that is important is that we only claim when the current batch is over, when
the length of l is size.

update method
def update(self, k: int) -> int:

""" Returns an index if claiming, otherwise None. """
# new batch, reset seen and b, the max of the samples we've seen
if len(self.l) == self.size:

self.l, self.b, self.size = [], -float("inf"), self.B
# update variables with new information
self.l.append(k)
self.b = max(self.b, k)
self.r -= 1

# no need to stop early, wait until the batch is complete
if self.b > self.Ef(self.r) and len(self.l) == self.size:

return self.l.index(self.b)

3.3.1 Simulation of Mudae

With the model complete, we now work on simulating Mudae. Our function will be
very similar to the model, starting by calling reset on the model and initializing its
own variables, l to hold kakera values, and r, the number of rolls remaining, starts at
rmax = 30. We define offset as R%B again, and initialize size identically to the model,
fulfilling the assumption that the offset is removed first.

simulate header
def simulate(m: model.Model=model.Model()) -> float:

""" Simulates a game. """
m.reset()
l, r, offset = [], prob.R, prob.R % prob.B
size = offset if offset > 0 else prob.B # remove the offset first
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We get a kakera value k from the kakera random variable X with sample. We add k
to our list and call the model’s update function, which returns an index i if it is claiming,
None otherwise. If i is an index, we make sure it is valid and return the kakera value it
corresponds to. Otherwise, we continue and decrement r since we just simulated a roll
cycle. Once we run out of rolls, we return 0 since the model didn’t claim.

body of simulate
while r > 0:

# new batch, reset seen and assume offset has been taken care of
if len(l) == size:

l, size = [], prob.B
k = sample()
l.append(k)
i = m.update(k) # give kakera value to the model
if i is not None:

assert 0 <= i < len(l), "model did not give a valid index"
return l[i]

r -= 1
return 0 # model didn't claim, kakera value of 0

We can now verify that our math is correct by repeatedly running simulate for a
large number of times, perhaps 106. The expected value is then simply the average value,
the sum of the values simulate returns divided by the number of trials.

empirical expected value via the law of large numbers
def E(X, iters: int=10**6) -> float:

""" Expected value by repeatedly sampling a random variable. """
return sum(X() for i in range(iters))/iters

This confirms that the model expected value is 306.064, which is significantly higher
than the expected value of the kakera distribution, 61.702. It is lower than E[X30], which
is 342.126. X30 corresponds to if one was able to do all 30 rolls and then pick the highest
value. Our model, only able to do batches of 10, is surprisingly close, however.

3.4 $rolls Model

We arrive at the last consideration in our model, the command $rolls. $rolls will
reset the number of rolls in the current batch, giving 10 rolls if the user is currently out
of rolls. However, the usage of $rolls is limited to once per day. Given that we can
claim every 3 hours, and therefore claim 8 times a day, it follows that the model must
use $rolls with less than a 1

8 = 12.5% probability. We separate our discussion into two
parts: the first on simply implementing this new command in our model and simulation,
and the second on the optimal determination of when to use the command.
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3.4.1 Implementation

Recall that the model emits an index if it wants to claim, None otherwise. We define the
constant ROLLS = −1 which the model returns if it wants to use $rolls, so there is no
ambiguity between resetting and claiming (indexes are nonnegative integers). We also
define ROLLS_CYCLE to be 8, the number of claim cycles until the model receives a new
usage of $rolls, and ROLLS_F to be the probability it uses $rolls, 1

ROLLS_CYCLE . Finally,
we assume the model only uses $rolls once per claim cycle. The actual game limits
usage to once per interval, which is equivalent to a batch in our formulation. 3 It very
rarely makes sense to use $rolls before we are actually out of rolls; we would have to
anticipate that at least 2 straight batches are bad (10–0, the first usage of $rolls). 4

The first thing we define is a helper function adjusting the state of the model after a
use of $rolls. Since $rolls resets the current batch (not necessarily adding 10 rolls),
we first create two helpful methods for modulo arithmetic. Any number x under mod n
can be written in the form qn+ r, or as a multiple of n and a remainder. The remainder
r is the modulo of x, x mod n or x%n.

When we reset a batch of size x, we are essentially finding the smallest multiple of
the batch size B that is greater than x. To find the largest multiple of B that is smaller
than x, since x can be written as qB + r, the lower bound is just qB. The upper bound
is thus qB +B or (qB + r) + (B − r) = x+ (−x mod B). Since B − r is between 1 and
B−1 if r is nonzero, B− r = B− r mod B = −r mod B = −x mod B. If r = 0, then
x is a multiple of B and is its own lower and upper bound, −x mod B = 0.

def lower(x: int, b: int=B) -> int:
""" Returns the largest value n such that n <= r and n % B == 0. """
return x - (x % b)

def upper(x: int, b: int=B) -> int:
""" Returns the smallest value n such that n >= r and n % B == 0. """
return x + (-x % b)

If we use $rolls, the amount of rolls we gain is the upper bound of r + 1, since if r
is a multiple of B we want it to reset to the higher multiple of B, not at its own value.
We set ∆ = upper(r)− r, and update r to r + ∆ to put it at its new value. We update
size as well to size+∆, because our batch now contains the characters currently in the
batch along with the new characters we roll from the rolls we got from $rolls (assuming
we do all our rolls within the minute long grace period). Finally, since we only use one
$rolls per claim, we set rolls_use to False, barring future usage of $rolls.

3If this limitation did not exist, check subsection 9.3 in the appendix for an analysis.
4It can be shown that the best return from a second use of $rolls is when the rolls from 10–0 are as

bad as possible; the return is then E[Z20]− E[Z10] ≈ 86. Comparing to the worst return for one use of
$rolls, it can be shown that that occurs at the highest value which triggers a usage of $rolls, or 72.
In that case the difference is E[max(Z10, 72)]− 72 ≈ 122. Because the best possible return for a second
use is less the worst possible return for one use, it is never worth it to use $rolls twice.
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helper function after using $rolls
def rolls(self) -> None:

""" Update the model's parameters if it uses $rolls. """
delta = prob.upper(self.r + 1, self.B) - self.r
self.r += delta
self.size += delta
self.rolls_use = False

With the model adjusted, we now focus our attention on the simulation. We first
need to give rolls to the model, which we will store in the rolls_left instance variable.
We could give the model a roll with 1

8 probability, but it is more consistent and accurate
to the game to simply give the simulate method an integer tracking the game number,
and give a usage if the index is a multiple of 8.

new simulate header
def simulate(m: model.Model=model.Model(), index: int=0) -> float:

""" Simulates a game. """
m.reset()
# give the model a roll every ROLLS_CYCLE claim iterations
if model.ROLLS_AVAILABLE and index % model.ROLLS_CYCLE == 0:

m.rolls_left += 1
...

The only other change to make is when handling output from the model. If the
output is not None, we know that the model is performing an action and handle the
action appropriately. Claiming is handled the same, and we handle $rolls according to
the rolls method defined above for the model.

new simulate body
...
i = m.update(k) # give kakera value to the model
if i is not None:

if i == model.ROLLS:
assert model.ROLLS_AVAILABLE, "$rolls is not allowed"
assert m.rolls_left > 0, "model doesn't have available rolls"
# $rolls resets the batch instead of adding the batch size
delta = prob.upper(r, prob.B) - r + 1
r += delta
size += delta
m.rolls_left -= 1

else:
assert 0 <= i < len(l), "model did not give a valid index"
return l[i]

...
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3.4.2 Optimization

With the framework of $rolls complete, we now discuss the determination of when to
use the command. Very simply, optimization problems are always determined by two
things: what we want to optimize and what the constraints are. The constraint is that
we can only use $rolls every one in 8 claim cycles. We want to optimize kakera, so
we should use our limited number of $rolls on the situations that maximize the gained
value. This is equivalent to being in the worst situations—the worse the situation, the
more advantage additional rolls gives us (put another way—the better the situation, the
less probability $rolls can improve on the situation).

Going from the abstract to the more specific, the measure of the quality of a situation
is simply its kakera value. If we’re about to claim a low kakera value character, that is
a situation to avoid. So we should use $rolls for any kakera value less or equal to a
certain cutoff, k∗. How should k∗ be determined? Well, suppose we have the CMF of
the model, Fmodel(k), which gives the probability we claim a value less than or equal to
k. Because we use $rolls whenever we’re about to claim a value less than or equal to
k∗, the probability we use $rolls is Fmodel(k

∗), which must be ≤ 1
8 . Therefore, we need

to compute Fmodel in order to compute k∗.
In order to compute Fmodel, we first need to compute the probability of emitting a

value at a particular number of rolls left r, p(emit at r). To compute that, we first need
to compute its CMF, p(emit at ≤ r). I know, very straightforward. Suppose we know
the probability of getting to r+1 rolls left is F (r+1). Then the probability of getting to
r rolls left is if we don’t emit at roll r + 1. We don’t emit if the value rolled is less than
the expected value cutoff, or if ZB ≤ E[Xr]. By definition, p(ZB ≤ E[Xr]) is the CMF
of ZB, a value we’ll call p. So F (r) = pF (r + 1), and the base case is that F (30) = 1
(since the largest number of rolls we have is 30). Note that if r is not a multiple of the
batch size, p = 1 since we only claim at the end of a batch.

In order to implement this, we first define a useful function which gives the current Zn

(since if the number of rolls isn’t a multiple of the batch size, we’ll have partial batches).
We use ZB by default, but if we’re in the offset (if r ≥ R− offset) then we use Zoffset.

current random variable
def __Z(self, r: int) -> list:

""" Returns the correct cmf of Z_n, accounting for offset. """
return prob.Fzs[self.offset if r >= self.R - self.offset else self.B]

The CMF then follows from the discussion above and the PMF is simply the adjacent
difference of the CMF.

cmf and pmf of emitting a value at r rolls left
def F_r(self, r: int) -> float:

""" Probability of getting to roll r. """
# since we never claim in the middle of the batch, use Z instead of X
p = prob.cmf(self.__Z(r), self.Ef(r)) if r % self.B == 0 else 1
return 1 if r == self.R else p*self.F_r(r + 1)
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def p_r(self, r: int) -> float:
""" Probability of emitting a value at roll r, pmf of F_r. """
return self.F_r(r) - self.F_r(r - 1)

We now compute the probability of emitting a kakera value k. We can do casework on
each possible number of rolls left r thanks to conditional probability, a quick description
of which is given in the appendix, subsection 9.2.

p(emit value k) =
R∑

r=0

p(k|r) · p(r)

p(r) is the function defined above and p(k|r) is simply the probability we emit k given
we have r rolls left. We emit if we roll a value higher than the cutoff, so the denominator
will be the survival function while the probability we emit k is the PMF, assuming k is
greater than the cutoff. If it isn’t, k has a probability of 0.

p(k|r) =
pZB

(k)

1− FZB
(E[r])

Rewriting p(emit value k) using p(k|r),

p(k) = pZB
(k)

R∑
r=0

p(r)

1− FZB
(E[r])

Note that the sum is a function of r and not k, so it can be cached for different k.
But we can’t just store the right sum as a scalar because if k is less than the cutoff at
a particular level, its probability is zeroed out. We therefore store the prefix sum and
binary search on the cutoffs to find the level r′ such that k ≥ E[Xr′ ]. We also need to
account for a possible offset by switching pZB

, so we in fact maintain two prefix sums,
one for r below the offset and the other for r above the offset.

calculating the pmf of emitting a value k
def __cache_p_k(self) -> None:

""" Generate cache for p_k """
self.poss = [1 - prob.cmf(self.__Z(r), self.Ef(r))

for r in range(self.R)]
i, f = self.R - self.offset, lambda r: self.p_r(r + 1)/self.poss[r]
self.cond = prob.prefix_sum(list(map(f, range(i))) + [0]*self.offset)
self.coff = prob.prefix_sum([0]*i + list(map(f, range(i, self.R))))

@lru_cache(maxsize=None)
def __p_k(self, k: int) -> float:

""" Probability of emitting the kakera value k. """
i = min(bisect.bisect(self.E, k), self.R)
return self.fz(k)*self.cond[i] + prob.fz(k, self.offset)*self.coff[i]
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With p(k) computed, we now have Fmodel which if you will recall, we use to find
the largest value k∗ such that we will use $rolls if we’re about to claim a value ≤ k∗.
We simply binary search on the CMF to find the value with CMF greater than 1

8 , and
subtract 2 (one for the CMF, and one to make it less than).

the rolls model
def __init__(self, R: int=prob.R, B: int=prob.B,

...
if ROLLS_AVAILABLE:

# generate cmf of p_k
self.Fk = prob.prefix_sum(list(map(self.__p_k, prob.X)))
# the largest value k* such that Fk(k*) triggers the roll cutoff
self.kp = prob.X[bisect.bisect(self.Fk, ROLLS_F) - 2]
assert prob.cmf(self.Fk, self.kp) <= ROLLS_F, "valid cutoff"
self.rolls_left = 0

def update(self, k: int) -> int:
...
# no need to stop early, wait until the batch is complete
if self.b > self.Ef(self.r) and len(self.l) == self.size:

# use $rolls if emitting this bad of a value has probability 1/8
if self.rolls_use and self.rolls_left > 0 and self.b <= self.kp:

self.rolls()
return ROLLS

return self.l.index(self.b)

Finally, we can recompute the PMF for the rolls model, since using rolls will change
the behavior of our model. To simplify the calculations, we assume that k∗ ≤ E[XB], an
assumption which can be checked empirically. Intuitively, the more $rolls we get, the
larger k∗ will be since we can use it more, and the less uses we get the smaller k∗ will be.
1
8 is sufficiently small to force k∗ ≤ E[XB], which means that we only use $rolls with
no rolls left (E is monotonically increasing with the number of rolls left, therefore for a
larger number of rolls left, if we claimed, we must have claimed for a value > k∗). Thus,
the PMF is only different for the last layer. We therefore look at plast(k), the probability
of emitting the kakera value k at the last layer. The old PMF was simply ZB. For the
new PMF, we sample ZB once. If the value is ≤ k∗, we sample ZB again. We now
analyze two cases, k > k∗ or k ≤ k∗ which are independent and cover all cases.

Let’s say we’re looking at a value k > k∗. Then we could have rolled it in the initial
sample and stopped, or the first sample was ≤ k∗, so we did a second sample and rolled
k. Since the cases are independent, we add their probabilities:

pZB
(k) + FZB

(k∗)pZB
(k) = (1 + FZB

(k∗))pZB
(k)

In the case that k ≤ k∗, we must have that k is the largest value in two separate
samples of ZB, or simply the largest sample of Z2B. Thus, the probability is pZ2B

(k).
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last layer pmf of the rolls model
def p_last(self, k: int) -> float:

""" Probability of emtting the kakera value k on the last layer. """
return (1 + prob.cmf(self.Fz, self.kp))*self.fz(k) if k > self.kp \

else prob.fz(k, 2*self.B)

We now compute the overall PMF by simply swapping out the last layer PMF.

pnew(k) = p(k) + p(emit at layer 1)(plast(k)− pZB
(k))

pmf of the rolls model
def __rolls_p_k(self, k: int) -> float:

""" Probability of emitting the kakera value k. """
return self.__p_k(k) + self.p_r(1)*(self.p_last(k) - self.fz(k))

With the mathematical analysis of the rolls model complete, we switch to a quanti-
tative and qualitative evaluation. Starting with the expected value:

Name Expected value (kakera) Standard deviation (kakera)
Kakera 61.702 79.727
Z10 191.873 196.072
Z30 342.126 259.412

Model 306.064 255.263
Rolls Model 322.036 252.524

Table 1: Table of random variables.

Unsurprisingly, the expected value of the rolls model is slightly higher, since it’s
sometimes able to avoid low kakera values. Looking at the graphs confirms this trend.

(a) Expected value over rolls left. (b) Expected value over batch size.

Figure 8: Expected value graphs.
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Figure 9: Model PMFs

Since we have the PMF, we can now graph the model PMFs: Towards the left side,
the rolls model has a much lower slope before rising parabolically upwards because it is
able to reduce the probability of low kakera values. One interesting observation is that
the local maxima in the original distribution are magnified: see the spikes at 700, 800,
1000, and 1100. With the PMFs we can also analytically calculate the variance:

Figure 10: Variance over rolls left.
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This has a surprisingly beautiful shape, coming up to a local maxima before smoothly
asymptotically approaching zero. The variance decreases because more rolls essentially
means more samples, but I’m not sure why the variance increases towards the beginning.
Whatever the case, it sort of resembles a blackbody radiation curve so there may be some
connection to statistical thermodynamics.

Finally, we can graph variance over batch size:

Figure 11: Variance over batch size.

Without rolls the variance is suspiciously linear, which is quite surprisingly for such
a nonlinear model. With rolls the variance starts to curve, exposing the underlying
nonlinearity. Why increasing batch size has a seemingly linear effect on both expected
value and variance when the PMF changes with respect to the power of the batch size is
hard to determine. With the rolls model complete, we now analyze one last mechanic.

3.5 Roll Pricing

Recall we only claim at the end of a batch, never in the middle of a batch. Doesn’t this
contradict our maxim “Claim when the current value is greater than the expected value
of r rolls left”? Well, what principle justified our maxim in the first place? We have two
options, claim or continue rolling. If we claim, the value is the value of the character. If
we continue rolling, the value is the expected value of r rolls left. We want to maximize
value, so we pick the option which gives the larger value. But hold on a second — we
have more specific information than just r rolls left! In particular, if we’re in the middle
of the batch then we have some largest value k. The value of our current batch is then
lower bounded by k. Thus, the value of continuing the batch is a capped expected value,
E[max(Zn, k)] where Zn is the appropriate batch random variable and k is the current
largest value in the batch, since if we roll values lower than k we can always claim k.
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expected value of continuing
def Eloss(self, r: int, k: int) -> float:

""" Expected value if the current batch is continued. """
n = r % self.B
return prob.capped(prob.Z, prob.Fzs[n], prob.evzs[n], k)

The real value of our current state, or our “status quo” is then the maximum between
Eloss and E[Xr], since we either claim in the current batch, or do our r remaining rolls.

def status_quo(self, r: int, k: int) -> float:
""" Represents the current value. """
return max(self.Eloss(r, k), self.Ef(r))

We could therefore rewrite the rule of “claim when the value is greater than the
expected value and only when the batch is over” as “claim when the value is greater or
equal to the status quo”. If we’re in the middle of a batch, Eloss is greater than k, so we’re
never going to claim5. If we’re at the end of a batch, then r%B is 0, E[max(Z0, k)] = k so
Eloss reduces to k, so checking whether k is greater than the status quo reduces to checking
whether k is greater than E[Xr]. Why did we derive this alternative representation of
our current value when our more computationally efficient stopping rule works just fine?

We can now define opportunity cost, the basis of value I will use to justify the for-
mulation of judging the value of buying or selling rolls. Since other users are also on
our Discord server playing Mudae, we can choose to buy or sell rolls. Suppose we used
all our rolls and didn’t get a good value. Then we can pay someone else to roll for us,
and claim from their rolls. Suppose we claim a high value character, and have rolls left.
Then we can sell our rolls to someone else, and let them claim from the rolls that are
now useless to us. How should buying and selling be priced?

We first analyze buying. If we buy b rolls, then our new expected value is E[Xr+b]
compared to E[Xr]. If we were at a new batch then the price at which we should buy
these b rolls would simply be E[Xr+b] − E[Xr] since we gain that much expected value
from using the b rolls. However, if we’re in the middle of a batch we must use the derived
status quo calculation. If our status quo is more valuable than E[Xr+b] then the extra
rolls don’t hurt—we should price them at 0.

buy price
def __buy(self, r: int, k: int, b: int) -> float:

""" Finds the price which we are indifferent to buying b rolls. """
return max(self.Ef(r + b) - self.status_quo(r, k), 0)

Selling is very similar. If we sell, then we must claim immediately, so our current
value is k, the largest value in the current batch. If we didn’t sell, then the value would

5If k is the largest possible value, then the capped expected value will not add to its value, so we
would claim k immediately instead of finishing the batch — it’s not possible to improve.
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be the status quo. This elegantly accounts for the case where the value of the status quo
is k, in which case we are indifferent to selling and price our sales at 0.

sell price
def __sell(self, r: int, k: int) -> float:

""" Finds the price which we are indifferent to selling r rolls. """
return self.status_quo(r, k) - k

In order to visualize the pricing for buying and selling, we assume we’re at a start of
a new batch. In that case the value of buying is simply E[Xr+b]−E[Xr]. If we’re buying
one roll, then this is simply the adjacent differences of the expected value graph.

Figure 12: Discrete derivative of the expected value graph.

The value of buying a single roll sharply drops as the number of rolls left increases.

4 Convolutions and the Central Limit Theorem

This section is a mathematical tangent, feel free to skip to the conclusion.
Suppose we know that we will do 5 claim cycles. By the linearity of expected value,

the expected value will be 5 times the expected value of one claim cycle, but can we
figure out the PMF of the new random variable?
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4.1 Derivation of the Sum of i.i.d Random Variables

We have two independently and identically distributed random variables X and Y and
wish to find the PMF. Surprisingly enough, we can directly compute the PMF without
any CMF or continuous trickery. Suppose we want the probability of the value v occur-
ring. Then we can split into cases based off X’s values. If X takes on some value i then
Y must take on the value v − i for the value of X plus the value of Y to be v. Since X
and Y are independent, the probability of them taking their respective values is simply
the product of the probabilities, and we sum over all possible values of i.

pX+Y (v) =
∞∑

i=−∞
pX(i)pY (v − i)

We call this function the convolution of the PMFs pX and pY , denoted pX ∗ pY .

Theorem 4.1. The discrete convolution is equivalent to polynomial multiplication.

Proof. We assume the discrete random variables takes on nonnegative integer values.
We encode a random variable X into a polynomial a using the following: First, we

represent polynomials as a coefficient list. For each value X can take, we index a at that
value and put the probability it occurs at that index. Put another way, if x is a value of
X occurring with probability p, then we make a[x] = p.

If a and b are polynomial representations of X and Y , then the convolution is:

(a ∗ b)[n] =

n∑
i=0

a[i]b[n− i]

This is equivalent to the polynomial multiplication of a and b. �

Along with computing the probability function of the sum of two random variables,
the convolution has many, many uses:

• Signal processing, audio processing (spectrograms)

• Polynomial multiplication, integer multiplication

• String matching

• Differential equations: the Laplace transform of the convolution is the product of
the Laplace transforms, L{f ∗ g} = L{f}L{g}

• Deepfake detection (really!)

• Kernels in image processing

• Gives “convolutional” neural networks their name

We do not discuss how to compute the convolution quickly; I have a lecture. It can
be done in O(n log n) with the Fast Fourier Transform (FFT), compared to the naive
polynomial multiplication of O(n2). Instead, we simply apply the convolution to compute
the PMF of the sum of i.i.d. random variables.
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4.2 The Central Limit Theorem

The central limit theorem is one of the most surprising theorems in probability; it states
that the distribution of the average value of multiple samples of a random variable ap-
proaches a normal distribution as the sample size approaches infinity, for any random
variable.

As proved previously, the sum of i.i.d random variables is the product of their poly-
nomial forms. Since each random variable has the same polynomial form, it is the power
of the polynomial. One could use a generalization of the binomial formula, the multino-
mial coefficients to compute this power, but it is simplest to use the fast exponentiation
trick, for log k multiplications, using the convolution for each polynomial multiplication.
This yields a O(kn log kn) time algorithm where k is the number of samples and n is the
length of the polynomial, compared to O(k2n log kn) without fast exponentiation and
O(k2n2) without either trick. The lower bound is O(kn).

We can directly apply this onto the PMF of the kakera distribution:

Figure 13: A demonstration of the central limit theorem.

As the number of samples increases, the graph becomes more normal. We see the long
right tail disappear as the PMF becomes more symmetric, the rightness being absorbed
in the peak shifting to the right. The variance also lowers, as the graph becomes tighter
and the peak grows higher. The peak will eventually reach the expected value of the
distribution, 61.702 while the graph becomes narrower and narrower.
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5 Is the Model Realistic? “Optimal”?

Throughout this paper, we have been focused on maximizing expected value. I claim
that the model is optimal with respect to its expected value. But is expected value really
the thing we want to maximize?

Suppose I offer you a 50% chance to get a million dollars versus a 80% chance for
$500,000. Which should you pick? Despite the higher expected value for the million
dollars, it is not obvious. One can argue the difficulty is psychological in nature or related
to the diminishing utility of money rather than the pure mathematically “rational” action
to take. But it is hard to separate.

Because of the strong law of large numbers, taking the average of many samples of a
random variable will converge to the expected value, as the number of samples approaches
infinity. Expected value is then essentially the value over an infinite timescale or horizon.
Generally speaking, the lower the variance, the faster the average value will converge to
the expected value. But even if the variance is infinite it will still converge. Is our
timescale really infinite in the real world? Are we going to play this Discord game
forever? The timescale really does matter, and with it what we define as “optimal”.

For example, take the St. Petersburg paradox. The expected value of the game is
infinite, but if we pay $50 we have only about a 3% chance to get our money back. If
we play the game infinite times, yes, the expected value will converge to infinity. But if
we play only once or twice, should we really sell everything we own and take out loans
for the opportunity to play this game? The St. Petersburg paradox poses a fundamental
threat to the notion that maximizing expected value is the “rational” thing to do.

One way to fix this it to notice that if we don’t know the rules of the game and need
to figure them out as we play, then we don’t know what hasn’t happened — events with
low probability aren’t likely to happen, so we won’t even know they exist. If we only play
once or twice, we might guess that the expected value is around 4. So one rule would
be “disregard low probability events”. This elegantly works if we play the game multiple
times, since the more times we play the game the more likely low probability events are
to occur, which might move us over the arbitrary “low probability” cutoff. But there is
a clear weakness: suppose we disregard any events with a probability α = 0.05 or lower.
I now offer you the following game: I give you a million dollars, except I also hand you
a slip of paper with a number between 1 and 20 written on it. The chance that any
particular situation occurs is 1

20 ≤ α. So you conclude the value of the game is 0 since no
situations occur! If I wrote a real number on the slip of paper, then no α is low enough.
So disregarding low probability events is clearly not a general principle.

Well, instead of comparing values what if we duel the two strategies? We compare
the strategy of “don’t play the game” versus the strategy of “play the game at some cost”
and simply pick the one that is more likely to win. But this also has a clear failure point
— it doesn’t account for the magnitude of a win. I offer you a 100% chance for 1 dollar
versus a 49% chance for 1 million dollars. Let’s say I take the dollar while my friend aims
for the million dollars. The chance I beat my friend is going to be 51% while the chance
my friend beats me is 49%. I am clearly more likely to win, so I should take the dollar!
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Of course, while the million dollars is slightly less likely, it gives a much larger reward
when it does happen. So comparing strategies naively is also not a general principle.

Let us conclude by going back to Mudae. We have spent 34 pages describing exactly
how to maximize expected value, only to just now question the entire basis of our mod-
eling. It is to temper expectations. Many people have told me that the model is too
optimistic and is not aligned with the reality of the game. I sometimes feel the same way
myself. Ignoring psychological and irrational explanations, one reason is that expected
value is not a perfect metric. But it is good enough.

Figure 14: Average value over number of games.

Yes, it sometimes takes many games (in this case, about 10,000) to converge to the
expected value. But the strong law of large numbers guarantees it, and because the
variance is not too large it is not too unreasonable. I personally have about 3,000 rolls
over the period of about a month, and anonymous others have much more than me.

Suppose we knew we would play exactly 10,000 games and then stop. Could we
explicitly compute the PMF of the model after 10,000 games with convolutions and then
pick the model that had the highest probability of winning at the end? Yes, but would
we want to? Would such a thing be tractable?

I conclude on a bit of life advice. It is popular to have phrases like “carpe diem”
(seize the day) or “you only live once” (YOLO). A thought experiment is to live each day
like it’s your last. But as we’ve seen, the concept of timescale is very important. If your
timescale is very short, a rational person would never invest since the returns would not
pay off in time. Expected value is investment over an infinite timescale, which might be
extreme in the other direction. Find a happy medium.
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6 $disablelist Optimization

With the optimal stopping rule derived, we now focus on a nearly completely orthogonal
direction, optimizing disablelists. We first need to define a few terms. A character is the
basic unit of Mudae, the objects that are rolled. A series is a set of characters. It can be
verified that the series are independent, that is, there is no pairwise intersection between
any two series. Finally, a bundle is a set of series. Bundles can have intersections. We
are allowed to disable bundles or series, that is, to prevent the characters they contain
from being rolled, but with a few restrictions. We can only disable up to 10 bundles or
series, and the sum of the number of characters in each has to be less than 20,000, which
is confusingly called the “overlap limit” — it does not actually account for overlap; it
simply adds up the number of characters in each bundle or series regardless of whether a
character appears multiple times. For simplicity, we only consider disabling bundles (we
can disable series by creating pseudo-bundles containing a single series). Finally, the list
of bundles we have disabled is called a disablelist. We therefore consider how to pick the
right disablelists for two objectives—acquiring characters and maximizing kakera. 6

6.1 Cardinality Optimization

We start by trying to acquire characters because it is much simpler. Suppose one desires
a particular character for emotional reasons irrespective of their kakera value. In order
to increase the likelihood they roll this character, they can disable as many characters as
possible to decrease the denominator of possible characters, increasing the probability.

We have to be careful when we say “character”. There are in fact multiple types of
characters, and using the $wa command specifies a particular type of character to roll
from. However, the overlap limit sums up the size of the bundle, measured by any type
of character the bundle contains. The problem is therefore to minimize the number of
wa characters (and therefore maximize the number disabled) subject to the constraints
of disabling 10 bundles and respecting the overlap limit.

Ignoring the overlap limit for now, this problem is identical to maximum set cover.
The max set cover problem is given a list of sets, pick K sets to maximize the number
of elements covered, or to maximize the cardinality (length) of the union of the sets.

If there was no overlap between the sets, then a simple greedy algorithm which picked
the largest set at every iteration would be correct. However, there is overlap, so the greedy
is not correct. If we wanted a optimal solution, we could brute force all the possible ways
to pick K sets from N ,

(
N
K

)
, which is prohibitively large for large N or K. Can we

therefore use greedy to get a pretty good, but not optimal, solution?
6We focus on optimizing personal disablelists, but the server can disable things as well. In particular,

my server had $togglewestern and $toggledisturbing on. There are also two other toggles, but they
were not disabled. I mention this because the optimal solution will have to take into account what the
sever has disabled—if the server disabled a character, you disabling it as well doesn’t do anything.
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6.1.1 Greedy and Approximate Algorithms

We can be a bit more clever with the greedy by picking the set which adds the most
new elements, taking into account overlap, instead of just the largest set out of the sets
we haven’t picked. This still isn’t optimal, but thanks to a clever proof, this yields a
1 − 1

e ≈ 0.63 approximation algorithm. That means that in the worst case, the size of
the union of the sets greedy picks will be 63% of the optimal solution.

That seems decent, but we still need to take into account the overlap limit. Unfor-
tunately, this is were the beautiful math goes to waste because there’s no easy way to
take it into account. I tried a few heuristics, but my best was prioritizing the number
of wa characters disabled towards the start, and the size of the bundle as the algorithm
gets closer to the overlap limit. If W is the number of wa characters, N the number of
characters, and D the current number of disabled characters, then I picked the bundle
with the best heuristic value:

W +
3

4
eD/20000−1(−N)

That yielded 12,528 characters disabled compared to the 12,658 disabled optimally,
which is much better than the 0.63 worst case approximation—it’s nearly 0.99.

Because the problem is NP-hard (intuitively, pretty hard), greedy is pretty much the
best we can do. Or is it? How did I calculate the optimal solution for 1,086 bundles,
7,367 series, and over 15,580 characters?

6.1.2 Mixed-Integer Linear Programming (MILP)

A classic mistake is thinking that NP-hard problems are unsolvable. NP-hard means
hard in the worst case. In practice, clever heuristics and algorithms make the average
case quite tractable, especially if one uses tried-and-tested off-the-shelf programs.

Linear programming (LP) is a class of optimization problems defined by a linear
objective and linear constraints. Integer linear programming (ILP) means the variables
are restricted to integers. Finally, mixed-integer linear programming (MILP) means the
variables can be integer or continuous. LP can be solved in polynomial time, but ILP and
MILP are NP-complete. However, there are out of the box solvers which can solve MILP
problems with thousands of variables and constraints; I use the python-mip package which
leverages the COIN-OR Cbc solver. Many problems can be stated as linear programs, so
it useful to formulate a problem as linear programming, then use an external program to
solve the resulting linear program. This is easier and likely faster than writing a ad-hoc
algorithm for the particular NP-hard problem, and can easily be extended (in this case,
to account for the overlap limit).

We can formulate our problem as integer linear programming. Suppose xi is a binary
variable (it is an integer variable which takes on the value 0 or 1) that represents whether
the ith bundle is picked, si is the size of the ith bundle (what contributes to the overlap
limit), yi is whether the ith series is disabled or not, and finally wi is the number of wa
characters in the ith series. Then the program is:
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maximize
∑

wiyi (number of wa characters) (cardiality program)
subject to: ∑

xi ≤ K (can only pick K = 10 bundles)∑
sixi ≤ 20000 (overlap limit)

for each yi:
∑

j|yi∈xj

xj ≥ yi (if yi is disabled, at least one bundle disables it)

xi, yj ∈ {0, 1} (xi and yj are binary variables)

It is quite simple to turn this linear program into code. We start by defining the
model, then make binary variables for each bundle and series.

model and variables
m = Model(sense=MAXIMIZE, solver_name=CBC)
# whether the ith bundle/series is disabled
x = [m.add_var(name=f"x{i}", var_type=BINARY) for i in range(N + A)]
# whether the ith series is included or not
y = [m.add_var(name=f"y{i}", var_type=BINARY) for i in range(M)]

We now add the objective, to maximize the number of wa characters:

objective
m.objective = xsum(w[i]*y[i] for i in range(M))

Finally, we add each constraint. We can only pick at most K bundles:

m += xsum(x) <= NUM_DISABLE, "number_disable"

We have the overlap limit to account for:

m += xsum(s[i]*x[i] for i in range(len(x))) <= OVERLAP, "overlap_limit"

The last constraint is the one preventing series from disabling themselves:

for i in range(M):
bundles = [x[j] for j in range(N) if series[i] in bundle[j]]
# the psuedo-bundle containing just the series
bundles.append(x[i + N])
# if yi is included, at least one bundle needs to have it
m += xsum(bundles) >= y[i], f"inclusion{i}"
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There are couple of things to note. When we disable a bundle, we never actually
explicitly disable the series it contains. The program will naturally disable them to max-
imize the objective. Since the running time increases with respect to the number of
constraints faster than the number of variables, avoiding extra constraints is good.7 We
can disable series and avoid going to the character level since series are pairwise indepen-
dent, so the sum of the characters disabled will be simply the sum of the characters in
each series. Inherent to the structure of the program itself, we elegantly avoid the need
to explicitly union the bundles by creating the binary variable for each series. Thus if
two bundles contain the same series, we do not over-count since that series’s indicator
variable will be 1, regardless of how many bundles disable it.

One trick we can use to speedup the program is to enforce that the number of bundles
disabled is exactly equal to K instead of less than or equal to. It is possible to imagine
situations where it is advantageous to not disable all the bundles we are allowed to, in
cases where we are very close to the overlap limit so disabling an extra bundle would
push us over, necessitating a change to our bundles. In practice, however, the program
generates solutions with K bundles disabled, so forcing exactly K speeds up the search.

With our efforts, we are able to cut the number of characters by approximately π,
increasing the probability by three-fold, reducing the number of rolls necessary to the
get the characters we want. With many other people using my optimized disablelists,
the effect is cumulative and we are rewarded from our hard work:

Figure 15: My collection.

7See page 18 of this chapter.
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6.2 Mixed-Integer Linear Fractional Programming (MILFP)

With cardinality essentially solved, we switch our focus to maximizing kakera. We must
first discuss theory to give context for our next program.

Recall we solved cardinality by writing the problem as a MILP. We now consider
fractional programs, when our objective is a fraction with a linear numerator and a linear
denominator. We will warm-up by first considering fractional constraints. Suppose we
have a constraint of the form:

a1x1 + a2x2 + . . .

b1x1 + b2x2 + . . .
≤ c

If we assume that the denominator has the same sign (we can assume positive, if the
denominator is negative we can negate the denominator and negate the numerator), then
we can multiply both sides by the denominator without changing the inequality.

a1x1 + a2x2 + . . . ≤ c(b1x1 + b2x2 + . . . )

(a1 − cb1)x1 + (a2 − cb2)x2 + . . . ≤ 0

The same trick works for ≥ or =, of course. If the constraint is equality, there does not
need to be the requirement that the denominator keeps the same sign because the sign
won’t switch when multiplying across. If the denominator is 0, then the multiplication
will be 0, forcing the numerator to be 0.

6.2.1 Charnes-Cooper

We now consider how to turn a fractional objective into linear programming. Suppose we
want to maximize a0+a1x1+a2x2+...

b0+b1x1+b2x2+... subject to constraints of the form c1x1+c2x2+· · · ≤ d.
We cannot do the same multiplication trick because there is only one side of the objective.
We instead create a new variable y0 = 1

b0+b1x1+b2x2+... which represents the denominator.
As usual, the denominator must stay the same sign and be nonzero. Using this new
variable, we transform the objective:

maximize
a0 + a1x1 + a2x2 + . . .

b0 + b1x1 + b2x2 + . . .

= (a0 + a1x1 + a2x2 + . . . )y0

= a0y0 + a1y0x1 + a2y0x2 + . . .

The problem is that we have variables multiplied by each other, which is not linear.
However, we can be clever and substitute yi = y0xi in order to make the problem linear.
Our objective has already been transformed, and for each constraint, we multiply on
both sides by y0 to force it into the terms of the newfound substitution.

c1x1 + c2x2 + . . . ≤ d
= c1y0x1 + c2y0x2 + . . . ≤ dy0
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Finally, we need to enforce the constraint that y0 is the denominator. We can convert
fractional constraints into linear constraints by multiplying across:

y0 =
1

b0 + b1x1 + b2x2 + . . .

b0y0 + b1y0x1 + b2x2y0 + . . . = 1

With the objective, constraints, and denominator prepared, we now make the substi-
tution. The original program was:

maximize
a0 + a1x1 + a2x2 + . . .

b0 + b1x1 + b2x2 + . . .
subject to:

c1x1 + c2x2 + · · · ≤ d
With the substitution yi = y0xi this becomes

maximize a0y0 + a1y1 + a2y2 + . . .

subject to:
c1y1 + c2y2 + · · · ≤ dy0
b0y0 + b1y1 + b2y2 + · · · = 1

We essentially get the same program! The only differences is that we change the
objective to just the numerator, and multiply each constant by y0. Lastly, we turn
the denominator into a new constraint. In terms of the compact matrix-vector way
to write a linear program, our original objective was essentially cT1 x

cT2 x
where the vector

x is
[
1 x1 x2 . . . xn

]T to account for the constant term. Our constraints can be
represented in a matrix A such that Ax ≤ b. After the transformation, x becomes
y = y0x and the objective becomes just the numerator, cT1 y. We add the vector −b as
the leftmost column of the matrix and set b = ~0. Finally, we add the denominator cT2 as
a row to the matrix, and 1 to b to turn the denominator into a constraint.

If we solve the new program, then we get solutions to y. To get the final solution, we
can compute x by just reversing the transformation, x = 1

y0
y.

This process is called Charnes-Cooper and works great for continuous variables, but
we quickly run into a problem for mixed-integer problems. Recall that we do the substi-
tution yi = y0xi. y0 is a continuous variable, and xi is a discrete variable. What the heck
is yi then? If we let yi be a continuous variable, that doesn’t work because there’s no
guarantee that after we divide by y0 we’ll get an integer—yi is free to take on many dif-
ferent values, not just multiples of y0. Meanwhile if yi is a discrete variable, that doesn’t
work because y0 can take on many different continuous values. So yi is ill-defined. In our
particular case, however, xi is a binary variable meaning it’s only ever 0 or 1. If there’s
only two possibilities, can’t we somehow force yi to equal y0xi?
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6.2.2 Glover’s Linearization

The general technique is called Glover’s linearization, “linearization” because it converts
a nonlinear term into a linear term. Suppose x is a vector of binary variables and
y is a vector of continuous variables. We wish to create a new continuous variable
zi = gi(x,y)xi, where gi(x,y) is a linear function of the variables. We assume that it
does not contain xi since x2i = xi (02 = 0, 12 = 1) and that it does not contain constants
(since multiplying by xi would be linear). We define L to be the minimum value of gi on
the relaxation of the domain X, XR, where the relaxation is the domain with the integer
requirements removed, or “relaxed”. We define U to be the maximum value of gi on XR.
In order to enforce that z is the product of gi and xi, we enforce two constraints:

Lixi ≤ zi ≤ Uixi (1)
gi(x,y)− Ui(1− xi) ≤ zi ≤ gi(x,y)− Li(1− xi) (2)

To see why this works, we can simply examine both cases. If xi = 0 then the first
constraint yields 0 ≤ zi ≤ 0, forcing zi = 0. The second constraint is then gi(x,y)−Ui ≤
zi ≤ gi(x,y)−Li. gi(x,y)−Ui must be less than or equal to zero since U is the maximum
value, and similarly, gi(x,y) − Li must be greater than or equal to zero since L is the
minimum value. zi = 0 thus necessarily satisfies the second constraint.

If xi = 1, then the second constraint yields gi(x,y) ≤ zi ≤ gi(x,y), forcing zi =
gi(x,y). The first constraint reduces to Li ≤ zi ≤ Ui, which is satisfied by the definition
of L and U . Thus, the two constraints force zi = gi(x,y)xi for any value of xi.

6.2.3 Solving MILFPs

We can now solve mixed-integer linear fractional programs. We first apply Charnes-
Cooper to obtain a non-linear integer program. We then apply Glover’s linearization to
form a mixed-integer linear program. While this technique is useful in the sense that we
only need to solve one MILP, it significantly increases the problem size. If the original
problem had I continuous variables, J binary variables, and K constraints, we add
J︸︷︷︸

Glover’s

+ 1︸︷︷︸
denominator

new continuous variables and 3J︸︷︷︸
Glover’s

+ 1︸︷︷︸
denominator

new constraints. We

add 3 constraints instead of 4 because the denominator is necessarily positive, so L = 0
and thus Lixi ≤ zi becomes 0 ≤ zi, which is usually implicit in linear programming.

6.3 $antidisablelist Optimization and Expected Value

Before we can apply MILFPs to our problem of maximizing kakera, we must formulate
the program in the first place. Before we formulate the problem, we introduce a new
mechanic: antidisable lists. We can antidisable up to 500 series, where antidisabling a
series means that it is no longer disabled. This is irrelevant if we want to maximize the
number of characters disabled as we did in the previous section, but is now relevant for
maximizing kakera value—it is conceivable that we disable a bundle with many low-value
characters and then selectively antidisable the series that contain high-value characters.
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We can implement this mechanic by introducing a new binary variable zi which represents
whether the ith series is disabled or not. We have that the sum of zi is less than or equal
to 500, and that zi ≤ yi since we can’t antidisable the series if the series isn’t disabled.
Finally, we replace yi in the objective with yi−zi to “zero-out” antidisabled series. What
is our objective, anyways? Instead of maximizing the number of characters disabled, we
want to maximize kakera. However, our model for kakera value is incredibly nonlinear.
The best we can do is use a heuristic, and the simplest is probably the expected value
of the kakera distribution. This corresponds to maximizing E[X], which is of course not
maximizing E[X30], but a higher E[X] should mean higher character values overall. How
do we formulate this objective of maximizing expected value? Let ti be the total kakera
value of the ith series. Then the expected value E[X] =

∑
ti(1−yi)∑
wi(1−yi) because yi is whether

a series is disabled, so 1 − yi is 1 if it is active, and 0 if the series is disabled. With the
objective complete, we make one last modification before formulating the MILFP. Recall
that the original linear program never explicitly enforced that disabling a bundle disables
the series it contains. That was fine for the old objective of maximizing characters, but in
this case it might be advantageous to not disable—since it is essentially a free antidisable.
We must therefore enforce that yi ≥ xj for each xj that contains yi.

name variable
xi ith bundle disabled or not
yi ith series disabled or not
zi ith series antidisabled or not
si size of the ith bundle
wi number of wa characters in the ith series
ti total kakera value of the ith series

Table 2: Variable names.

maximize
∑
ti(1− (yi − zi))∑
wi(1− (yi − zi))

(expected value) (expected value program)

subject to:∑
xi ≤ K (can only pick K = 10 bundles)∑
sixi ≤ 20000 (overlap limit)∑
zi ≤ 500 (antidisable limit)

for each yi:∑
j|yi∈xj

xj ≥ yi (if yi is disabled, at least one bundle disables it)

yi ≥ xj (disable yi if at least one bundle disables it)
zi ≤ yi (can’t antidisable if series isn’t disabled)
xi, yj , zk ∈ {0, 1} (x, y, and z are binary variables)
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Before we blindly apply our MILFP solving technique we notice that xi does not
appear in the objective. In the continuous case, we essentially discard the old variables
and replace all of them with the transformed variables, but in the mixed case we keep
the old binary variables to enforce the constraints on the transformed variables. We
therefore save constraints and variables if we simply don’t multiply inequalities on both
sides by the denominator, and because we skip the multiplication we don’t need to
transform xi at all. A bit of ambiguity is whether we apply constraints like

∑
zi ≤ 500

to the transformed zi or the binary zi. zi (and yi) are essentially unconstrained if the
constraints are written entirely in the form of their transformed versions, and take their
values through the constraints in Glover’s linearization. It is therefore more consistent
with xi, simpler, and more efficient to enforce the constraints on the binary versions
rather than the transformed versions.

We denote the continuous denominator variable for Charnes-Cooper as d and we
denote the transformed variables y′i = dyi and z′i = dzi. We must also determine the
upper and lower bounds of d for Glover’s linearization. The denominator is one over the
sum of the characters of the series that are not disabled, so it is nonnegative (there would
have to be infinite characters to make d = 0) and its largest value is when the number
of characters is the smallest, when as many characters as possible are disabled. There is
a hard limit of 90% of characters disabled, so d is bounded, and a simple upper bound
is 1. The transformed program will look very similar to the base program:

maximize
∑

ti(d− (y′i − z′i)) (numerator of expected value) (linearized)
subject to: ∑

wi(d− (y′i − z′i)) = 1 (denominator of expected value)∑
xi ≤ K (can only pick K = 10 bundles)∑
sixi ≤ 20000 (overlap limit)∑
zi ≤ 500 (antidisable limit)

for each yi: ∑
j|yi∈xj

xj ≥ yi (if yi is disabled, at least 1 bundle disables it)

yi ≥ xj (disable yi if at least 1 bundle disables it)
zi ≤ yi (can’t antidisable if series isn’t disabled)

for each yi and zi, call the variable vi:
Lvi ≤ v′i ≤ Uvi (1st condition of Glover’s)

d− U(1− vi) ≤ v′i ≤ d− L(1− vi) (2nd condition of Glover’s)
xi, yj , zk ∈ {0, 1} (x, y, and z are binary variables)
d, y′i, z

′
j ∈ [L,U ] (continuous variables)
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The program is pretty sensitive to L and U . It is simplest to pick L = 0 since that
removes a constraint (linear programs implicitly have nonnegative constraints). How
does one determine U? We can simply use the definition, the largest value on the
relaxation. If we relax the problem we get a linear program, whose objective is to
minimize

∑
wi(1−(yi−zi)) since d is one over that expression. Since linear programming

is polynomial time, it will run much quicker than the MILFP. Even with the tight upper
bound of U = 0.0002, the MILP does not converge in any reasonable amount of time.
One must therefore restrict the running time and forgo convergence. It is also helpful
to reduce the number of variables, for example, to restrict the bundles being disabled to
the top 100 largest bundles as the smaller bundles necessarily have less of an effect.

Another trick is to re-write the constraint that yi ≥ xj . It looks innocent because of
the notational trick: I mean that yi needs to be greater than each xj such that yi ∈ xj .
In the worst case each series could add up to the number of bundles to the number
of constraints. The intuition is that we want to force yi to be 1 if any xj is 1, or if
x1 + x2 + · · · + xn is greater than 0 (addition is essentially bitwise OR). We can’t just
enforce that yi ≥ x1+x2+ · · ·+xn because if multiple xj are on, yi can only be at most 1.
So we can divide by the same thing to “normalize” the addition into a boolean. We then
enforce yi ≥ x1+x2+···+xn

x1+x2+···+xn
which is not equivalent to enforcing that yi ≥ 1 because of the

case where all xj are 0. To see the difference, multiply across to linearize the constraint:
(x1 + x2 + · · ·+ xn)yi = x1 + x2 + · · ·+ xn. If each xj is 0, then the constraint reduces
to 0 = 0, which is trivially satisfied. The other constraint that

∑
xj ≥ yi then forces

yi to be 0, which must be true if none of the bundles which contain it are disabled. If
at least one of the xj ’s is 1, then yi is forced to be 1 to make yi ≥ x1+x2+···+xn

x1+x2+···+xn
true.

Meanwhile the second constraint is now redundant as it reduces to
∑
xj ≥ 1, which is

satisfied as we know at least one of the xj is 1. Although the new constraint works to
enforce the behavior we want, the product between yi and the sum of xj ’s then needs to
be linearized with Glover’s, which we can do all at once instead of for each xj :

gi(x,y) = x1 + x2 + · · ·+ xn (3)
Liyi ≤ y′i ≤ Uiyi (4)

gi(x,y)− Ui(1− yi) ≤ y′i ≤ gi(x,y)− Li(1− yi) (5)
y′i ≥ gi(x,y) (6)

L is clearly 0 if all xj are 0 and a simple upper bound for U is simply the number
of xj which contain yi, n. Using these new bounds, we can simplify the 5 inequalities
considerably. The left half of (4), Liyi ≤ y′i, becomes 0 ≤ y′i, which is again implicit in
the definition of y′i, so it can be removed. For the left half of (5), we consider the two
cases of yi. If yi = 0 then y′i = 0 from the right half of (4) and gi(x,y)− Ui ≤ 0 follows
from the definition of U . If yi = 1, then the inequality reduces to gi(x,y) ≤ y′i which is
exactly (6). Thus, because it is redundant in either case, we can remove this constraint as
well. Finally, we notice that if L = 0, then the right side of (5) reduces to gi(x,y) ≤ y′i,
which can be combined with (6) to yield y′i = gi(x,y). Since this is an equality constraint
with just one variable, we can avoid creating a new continuous variable for y′i by just
substituting its value wherever y′i occurs, in this case just y′i ≤ Uiyi.
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Recall that we started by adding possibly n new constraints per series, where n is the
number of bundles which contain the series. Using the re-write and Glover’s linearization,
we turned O(n) into O(1) by adding at most 5 constraints and 1 continuous variable.
Finally, with the observations pruning extraneous constraints, we add just 1 constraint:

gi(x,y) ≤ Uiyi

After running for 2 hours on Snowy, the linear program found an expected value of
75.679 compared to the original 61.702 and a model expected value of 429.839 compared
to 322.371. A 14 kakera improvement in the kakera distribution is nothing extraordinary,
but that difference is heavily magnified by the model, increasing the average value per
claim by more than 100 kakera.

6.3.1 Linear Regression

While expected value is a decent heuristic, can we do better? Our objective must be
linear, because we are using linear programming. Is there a way to turn a nonlinear
function into a linear function? Well, the best we can do is to fit a line. We fit this line
with linear regression—my derivation can be found here.

Our objective is a mapping from the active series to the expected value of the model.
We can represent the active series as a bitstring of whether a series is active or not, so
the dimensionality of the input is the number of series. We randomly and uniformly8

generate a bit string by generating each bit at a time, where each bit has a 0.5 chance to
be 1 and a 0.5 chance to be off. We then extract a random variable from the resulting
character data and feed the random variable to our model, which computes the expected
value. Doing this multiple times to generate a dataset, we fit linear regression to the data
which gives us a linear function representing the relationship between the series variable
and the expected value. We can then use this line as the objective of our linear program.

The benefits over the MILFP for expected value is that our linear regression might
be more aligned with the model expected value and that we do not increase the problem
size. Despite the significantly reduced problem size, it still does not converge in time.
In terms of the results, I generated a dataset with 10,000 rows. The linear regression
has a R2 of 0.953 on the training dataset but only a 0.586 R2 on the testing dataset of
size 1,000, suggesting a lack of generalization.9 As a result of this lack of alignment, the
expected value of the kakera distribution is actually lower and the model expected value
is approximately the same.

8What does it mean to generate something “uniformly”? Each thing in the space must have an equal
probability of being picked. There are 2n bitstrings of length n, and if we generate bit by bit, with each
bit having a 0.5 chance to be 1, then each string has a 1

2
· 1
2
· . . . · 1

2
= 1

2n
chance of being generated.

9I am aware that a higher score on the training dataset relative to the testing dataset is a classic
sign of overfitting. However, in this situation the linear regression is by definition underfitting—the
relationship is highly nonlinear, so a linear model is not the right choice.
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6.4 Conclusion

I began this section optimistically, stating that NP-hard is not a death sentence—
problems can still be tractable in the average case. My optimism is tempered by the
lack of convergence I have witnessed for the latter programs. To summarize, we will
compare the sizes of each of the programs developed. If B is the number of bundles and
S is the number of series, then:

name binary variables continuous variables constraints

cardinality (B + S) + S 0 1 + 1 + S
B + 2S 0 S + 2

fractional
program

[B + 2S] + S 0 [S + 2] + 1 + S + S
B + 3S 0 3S + 3

linearized
program

B + 3S 2S + 1 [3S + 3] + 3(2S) + 1
B + 3S 2S + 1 9S + 4

Table 3: Program sizes.

The sizes grow quite quickly from the cardinality program to the final MILFP. Like-
wise, the cardinality program converges in less than 10 seconds while I have no idea how
long the expected value MILFP takes to converge—all I can say is that it’s longer than
24 hours. Would the parametric algorithm instead of the reformulation-linearization ex-
plored in this section be more efficient? I encourage the reader to see for themselves.
Whatever the case, the problem is rich for future exploration—the optimization of an
incomplete heuristic hasn’t even been solved! Can the connection between optimizing
disablelists while taking into account the probabilistic model ever be completed in full?
I wouldn’t have written 50 pages if I thought that the task was truly impossible. �
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7 Extensions and Future Work

Despite the length of this paper, there remains many avenues for future research.

1. A proper way to maximize expected value. In order to optimize disablelists, we use
expected value of the kakera distribution as a heuristic for the expected value of
the model. Can we get better performance with quadratic programming or convex
optimization techniques? Deep learning?

2. A provably optimal model over a known timescale. As stated before, if the timescale
is known then the optimal model changes (because expected value is optimal over
an infinite timescale). Can we create a model that is optimal for short timescales?

3. Empirically inferring taste distributions. People do not act to maximize expected
kakera value. They have characters they like, which they might claim without re-
gard to its quantitative value. Suppose we assume that these people are not simply
irrational but have a different value distribution, a phenomenon often called taste.
Can we infer a person’s taste distribution from their actual claiming behavior?

4. Implementing more Mudae mechanics. Wishlists, badges, kakera reacts, etc.

5. A Discord bot. While self-botting is against the terms of service, a discord bot
which one could invoke for advice would be nicer than interacting with the CLI.

6. A class for random variables. It would be cleaner to create a RandomVariable
class which contained all the helper methods like PMF, CMF, expectation, etc. One
could then instantiate this class by providing a list of values and their probabilities.
That would be nicer than carrying around lists everywhere and managing functions.

8 Sources

1. The inverse transform for sampling—Wikipedia

2. My convolution and the FFT lecture

3. St. Petersburg Paradox—Stanford Encyclopedia of Philosophy

4. Maximum set cover

5. Python mixed-integer linear programming library

6. Duality in linear programming

7. Ratios in linear programming

8. Solving mixed-integer linear fractional programs

9. Glover’s linearization

10. Relaxation

47

https://en.wikipedia.org/wiki/Inverse_transform_sampling
https://activities.tjhsst.edu/sct/lectures/2021/2020_10_23_FFT_handout.pdf
https://plato.stanford.edu/entries/paradox-stpetersburg/
https://people.seas.harvard.edu/~yaron/AM221-S16/lecture_notes/AM221_lecture18.pdf
https://www.python-mip.com/
http://web.mit.edu/15.053/www/AMP-Chapter-04.pdf
http://lpsolve.sourceforge.net/5.1/ratio.htm
https://optimization.mccormick.northwestern.edu/index.php/Mixed-integer_linear_fractional_programming_(MILFP)
https://doi.org/10.1016/j.disopt.2004.03.006
https://glossary.informs.org/ver2/mpgwiki/index.php?title=Relaxation


9 Appendix

9.1 Secretary Problem

Mudae is very related to the secretary problem. Suppose you are a secretary interviewing
job applicants. You have n candidates and there is a clear ranking among the candidates,
e.g. after interviewing a candidate you can tell how they rank amongst the candidates
you’ve already interviewed. The twist is that you must choose to accept or reject a
candidate immediately after their interview. What should be your strategy to maximize
the probability of picking the best candidate?

It can be shown that the optimal strategy is of the form “always reject the first r
candidates, then pick the first candidate who is better than all the candidates you’ve
rejected.” Interestingly enough, r approaches n

e as n approaches ∞, so you should reject
the first 1

e fraction of candidates or about the first 36.8%. The probability of picking the
best candidate is also 1

e , regardless of the size of n.
How is this problem related to Mudae? Both are based off the immediate decision

making for a given candidate. Consider the following two solutions for the secretary
problem: one picks the best candidate with a 50% chance, but picks the absolute worst
candidate the rest of the time. The other picks the best candidate with a 49% chance,
and picks the second best the rest of the time. Is the first strategy really better than the
second strategy? If one weights the candidates by some quantitative value with a known
distribution and wants to maximize the expected value rather than simply the maximum
value, then the problem reduces to Mudae.
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9.2 Conditional Probability

Definition 9.1. The probability that an event A happens conditional on B is denoted
p(A|B), i.e. the probability A happens “given” B happens. This should not be confused
for p(A ∩B), the probability A happens and B happens.

Corollary 9.0.1.

p(A|B) =
p(A ∩B)

p(B)

Proof. We will use an informal (and therefore loose) definition of probability as the
number of ways for something to occur over the total number of ways. Since we know B
occurs, the total number of ways is p(B). The number of ways A occurs is the number
of events where A occurs and B occurs, because we know B occurs. �

One way to picture this is to imagine a Venn diagram in a rectangle, where the
rectangle is the universe of all possible events, one circle is A, and the other B. If
we restrict our universe to B since we know B occurs, then the ways A occurs is the
intersection of A and B, A ∩B. The ways B occurs is just B’s circle, p(B).

Theorem 9.1. Bayes’ Theorem, i.e. switching conditional probabilities:

p(A|B) =
p(B|A)p(A)

p(B)

Proof. From the definition of conditional probability we know

p(A|B) =
p(A ∩B)

p(B)

Multiplying by p(B) on both sides,
p(A|B)p(B) = p(A ∩B)

Since we know A ∩B = B ∩A,
p(B ∩A) = p(A|B)p(B) = p(B|A)p(A)

where the latter identity comes from the original identity. Thus,

p(A|B) =
p(B|A)p(A)

p(B)
�

One way to interpret this theorem is suppose A is our hypothesis and B is a new
piece of data. Then p(A|B) is how confident we are in the hypothesis given the new
piece of data, p(B|A) is how probable the data is under our hypothesis, p(A) is the prior
probability in our hypothesis (how sure we are in the hypothesis before piece of data),
and p(B) is how probable the data is overall (which, in practice, is often intractable: how
do we compute the probability over all hypotheses?).
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9.3 “General” Rolls Model

We have two key assumptions:

1. Use at most one $rolls per claim cycle.

2. k∗ is less than E[XB]

The second assumption can be checked empirically and is only for making introspection
easier. Can we formulate an optimal model with an unlimited usage of $rolls per claim?

The observation is that we want to avoid low kakera values, regardless of when they
occur. For example, the minimum possible value is 32. Suppose we are about to claim a
32 value character, and use $rolls to avoid this fate. However, we get unlucky and all 10
of our new rolls were 32 yet again. Should we use $rolls again, or at some other time?
Well, in what other situation would it be as beneficial to avoid the minimum possible
value? Ignoring the fact that we’ve already used $rolls, clearly we should use it again.

The probability of being about to claim k = 32 is the probability we’re at the last
layer times the probability of rolling k, p(emit at 1)pZ(k). Then the chance we use
$rolls once is p(1)pZ(k)(1 − pZ(k)) since we if we use it exactly once, we first roll k
then roll anything higher than k, which is anything except k. The chance we use it
twice is p(1)pZ(k)2(1 − pZ(k)), three times p(1)pZ(k)3(1 − pZ(k)), and so on. This is a
geometric random variable with probability of success 1 − pZ(k) (in this case “success”
is not rolling k since that’s when we break out of using $rolls). The expected value is
then p(emit at1)pZ(k)

1−pZ(k) , which is how many times we expect to use $rolls if we use it only
on the minimum value. If this is less than 1

8 , then we can also use $rolls on the second
smallest value. In general, we find the largest k∗ such that p(emit at1)FZ(k∗)

1−FZ(k∗) is smaller
than 1

8 (since the chance we “enter” a cycle of using $rolls is p(1)FZ(k∗) and the chance
we break out is if we roll something higher than k∗, a 1− FZ(k∗) chance). We find this
k∗ with binary search like the standard rolls model, and if we binary search on indexes
the time is O(log n) rather than binary searching on values, O(log2 n) because of the
O(log n) cost to compute the CMF at a value not in the range.

This has the effect of lowering k∗ relative to the standard rolls model, 68 versus 72.
This is because more probability mass is concentrated in the lower kakera values, since
we can use $rolls a theoretically infinite times on each kakera value smaller than k∗.
It also slightly raises the expected value since we use $rolls on the worst situations,
322.371 for the general model versus 322.036 for the standard model.

Unfortunately, the actual game limits $rolls to once per interval, so this model is
simply an interesting demonstration of geometric random variables.
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