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1 Introduction

The Plaid is a 4x12 ortholinear keyboard made from through hole parts, designed by
hsgw. For more information, check out my repository.

Our discussion centers around the two LEDs at the top right corner of the keyboard.
These LEDs can be programmed to turn on and off with the QMK firmware, and while
checking out the “Blinkin lights” mode which promises to have a “random chance of state
change on each keystroke”, I saw the following C code:

blinkin code
case LEDMODE_BLINKIN:

if (record->event.pressed) {
if(rand() % 2 == 1) {

if(rand() % 2 == 0) {
writePinLow(led);

}
else {

writePinHigh(led);
}

}
}
break;
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https://github.com/stephen-huan/plaid
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It essentially says that when a key is pressed, have a 1/2 chance of making the state of
the LED random (the C rand() function gives a random integer between 0 and RAND_MAX,
so that integer being even or odd can be said to have a probability of 1/2). Suppose the
LED is initially on. Then the chance it switches off when a key is pressed is a 1/2 chance
for it to be random, and a 1/2 chance that it switches off, so a 1/4 chance to be off. This
is symmetric for off to on, so the code forms a Markov chain with two states, on and off,
and a 1/4 chance to transition and a 3/4 chance to stay in the same state.
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Figure 1: Markov chain for the blinkin code.

How do we compute state changes of this Markov chain efficiently? We can represent
our current state as a 2x1 vector, which by convention will be on and then off, e.g.

~v =

[
p

1− p

]
p(on)
p(off)

Our transitions can then be efficiently represented as a matrix, because the probability
of being on is p(on)p(stay on) + p(off)p(change off) = 0.75p+ 0.25(1− p).

M =

[
0.75 0.25
0.25 0.75

]
So pressing a key once will change our state from ~v toM~v, twice toM(M~v) =M2~v, and
k times to Mk~v. Matrix powers can be computed efficiently using repeated squaring:
squaring a matrix repeatedly generates M,M2,M4, . . ., if one writes the power k in its
binary form, then it is simple to multiply these matrices to form k with O(log k) matrix
multiplications. A simple implementation is here.

This matrix representation also gives us a nice mathematical analysis. We will show
that the steady-state solution to this Markov chain is

[
0.5 0.5

]T , or the convergence of
any initial vector to this final state given enough iterations. If a vector ~x is a steady-state
solution, then multiplying by M does not change its value. Therefore:

M~x = ~x

Subtracting ~x from both sides,
M~x− ~x = ~0

(M − I)~x = ~0
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https://activities.tjhsst.edu/cubing/static/pdfs/cubing-lectures/EigenvaluesofPermutationMatrices/eigenvalue.pdf#page=5


This is equivalent to saying that M has an eigenvector with eigenvalue 1. Let’s solve for
the eigenvectors of M and see what happens:

det(M − λI) =
∣∣∣∣0.75− λ 0.25

0.25 0.75− λ

∣∣∣∣ = (0.75− λ)2 − 1

16

= λ2 − 3

2
λ+

1

2
= (λ− 1)(λ− 1

2
) = 0

λ =
1

2
, 1

For λ1 = 1
2 , we find its associated eigenvector:[

0.25 0.25
0.25 0.25

]
~x1 = ~0→ 0.25x1 + 0.25x2 = 0→ x1 = −x2

Taking x1 = 1,

~x1 =

[
1
−1

]
Similarly, for λ2 = 1:[

−0.25 0.25
0.25 −0.25

]
~x2 = ~0→ −0.25x1 + 0.25x2 = 0→ x1 = x2

Taking x1 = 1
2 ,

~x2 =

[
0.5
0.5

]
Note that ~x1 cannot be interpreted as a probability vector because it contains a negative
value, while ~x2 is our steady-state solution. To show that any vector converges to the
steady-state, we notice that these two eigenvectors form an basis, since they are linearly
independent and the dimensionality of the space is 2. Thus, we can write every vector
as a linear combination of these two eigenvectors.

~v = c1~x1 + c2~x2

If we multiply by M ,
M~v =M(c1~x1 + c2~x2) = c1M~x1 + c2M~x2

= c1λ1 ~x1 + c2λ2 ~x2 = c1
1

2
~x1 + c2 ~x2

Mk~v = c1
1

2k
~x1 + c2 ~x2

Thus, as k goes to ∞, the contribution of ~x1 goes to 0
lim
k→∞

Mk~v = c2 ~x2 = ~x2

Since we know Mk~v is a probability vector, its entries must sum to 1 so c2 must be 1.
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Therefore any starting vector converges to the steady-state solution. The proof of the
remarkable fact that the distance between a vector and the steady state halves every
iteration is left as an exercise for the reader (where “distance” is taken to be the simpler
`1 norm, not the standard vector distance).

2 Code Generalization

Suppose we modified the probabilities in the code, that is, we made it so that it was
not necessarily a 1/2 chance of flipping a fair coin between on or off. There are two
probabilities to modify, the first which controls the probability of flipping the coin and
the second which weights the coin. It is simple algebra to show that this code can only
simulate Markov chains with transition probabilities that sum up to less than or equal to
1. A simple Markov chain that this code can’t simulate is the one which always switches
— from on to off and vice versa. We now consider the most general Markov chain,
characterized by two transition probabilities:

On Off
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y

1 - x 1 - y

Figure 2: General Markov chain for two states.

I leave the proof that x must equal y for the steady-state to be
[
0.5 0.5

]T for the
reader. x = y means that the Markov chain is symmetric.

We can easily simulate this in code if we have an explicit probability to transition,
and the original code is now a special case of the general code:

General Markov chain
double x = 0.25;
double y = x;

double p = (readPin(led)) ? x : y;
if (rand() < p*RAND_MAX) {

togglePin(led);
}

2.1 Markov Chain with Random Transitions

For our last point of analysis, we consider what happens if we randomly pick the transition
probability: not 0.25, but uniform from [0, 1]: double x = (1.0*rand())/RAND_MAX;
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In that case, we cannot represent the Markov chain in only two states, but it propa-
gates forward in time like a neural network:

On0 On1 On2

Off0 Off1 Off2

1− x0 1− x1 . . .

x
0

x
1

. . .

1− y0 1− y1
. . .

y 0 y 1 . .
.

Figure 3: Time in-homogeneous Markov Chain

We now analyze how fast it takes to converge to the steady-state solution. Since
we are sampling the transition probabilistically, the convergence is also probabilistic.
Suppose we start with a probability of p of being on, so there is a 1− p probability it is
off. Also suppose are current transition probabilities are a for on to off and b for off to on.
Then after one press we have a probability of (1−a)p+b(1−p) = (1−a−b)p+b to be on.
The ratio of the distance from 1

2 before and after is then (1−a−b)p+b−0.5
p−0.5 = 1− a− b with

a remainder of −0.5a+0.5b
p−0.5 . Since we assume a = b, the remainder is zero and the distance

reduction factor is |1 − 2a|, absolute value because distance is positive. Because this is
symmetric about a and takes values uniformly between 0 and 1, the distance reduction
factor can be simplified to a uniform random variable between 0 and 1.

Finally, we compute the probability density function of the distance by first com-
puting the cumulative density function, Fn(y), the probability that after n key presses
the distance is less than or equal to y. To do this we use what I like to think of as
mathematical dynamic programming, more commonly known as induction. F1(y) = y
since after one key press the chance that the distance is less than y is if the uniform r.v.
takes a value ≤ y. To compute F2, we integrate over each reduction factor x. If we want
a final distance of y, then any distance less than or equal to y

x before multiplying by x
will be sufficient. However, we have to cap y

x at 1 because the distance monotonically
decreases (a distance factor larger than 1 is impossible). So F2(y) =

∫ 1
0 min(F1(

y
x), 1)dx.

Because F1(y) = y and y
x ≥ 1→ y ≥ x, we split the integral into

∫ y
0 dx+

∫ 1
y

y
xdx which

is equal to y + [y lnx]1y = y − y ln y. Generalizing this process,

Fn(y) =

∫ y

0
dx+

∫ 1

y
Fn−1(

y

x
)dx = y +

∫ 1

y
Fn−1(

y

x
)dx

and the PDF is of course fn = F ′n. Computing F3, F3 = y +
∫ 1
y (

y
x −

y
x ln

y
x)dx. Using
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integration by parts, we get y − y ln y + 1
2y ln

2 y. It can be shown by induction that

Fn+1(y) = y − y ln y + 1

2
y ln2 y − 1

6
y ln3 y +

1

24
y ln4 y + · · ·+ (−1)n

n!
y lnn y

Similarly,

fn+1(y) =
(−1)n

n!
lnn y

which comes from the interesting property that the last term of Fn+1,
(−1)n
n! y lnn y, derives

to (−1)n
n! lnn y− (−1)n

(n−1)! ln
n−1 y, so if Fn derives to (−1)n

(n−1)! ln
n−1 y (the inductive hypothesis),

the two terms cancel when they are added together, leaving fn+1.
What are the characteristics of this series? It is hard to analyze mathematically, but

simple numerical experimentation shows that the expected distance decreases exponen-
tially as the number of key presses increases. That is, if one is 99% sure that they are
within 0.01 of the steady-state, it is an linear amount of additional key presses to be
99.9% sure or to be within 0.001 of the steady-state. Thus, it is efficient to be “probably
approximately correct”. Compare this to the original code which guarantees halving of
the distance to the steady state every iteration — there are no probabilities, and it is easy
to see that it takes a linear number of key presses to increase the number of significant
figures one is from the steady-state. Such is the cost of probabilistic algorithms.

2.2 Implementation

An implementation of the random transition Markov chain with some nice ASCII is here.
Lastly, we verify that the math we did was correct. We simply do 105 iterations with a
computer to get a histogram of the distances, and compare to our theoretical result.

Figure 4: Monte Carlo simulation (in blue) versus theoretical computation (in orange)

The Python code is on the next page.
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simulation
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import factorial

def sample(l: int=1) -> float:
""" Draws a random distance factor. """
d = 1
for i in range(l):

p = np.random.rand()
d *= abs(1 - 2*p)

return d

def prob(d, c) -> int:
""" Iters until the chance that the distance is <= d is >= c """
# initial distance starts at 1/2
d *= 2
i = 1
p = d
lg = np.log(d)
while p < c:

p += abs(d*np.power(lg, i)/factorial(i))
i += 1

return i

print(prob(0.01, 0.99))

N = 10**5
l = 2
data = [sample(l) for i in range(N)]

fig = plt.figure()
plt.hist(data, 100)
x = np.linspace(0, 1, num=N)
plt.plot(x, -1000*np.log(x))
plt.show()
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