
Missile Guidance in the Presence of Constant Error

Stephen Huan, in collaboration with Sergey Blinov

September 28, 2021

1 Problem Statement

A missile is heading towards the origin at a constant speed, however, its guidance system
has an error — it is always deflected by an angle of α. How long will it take to reach the
origin, compared to the straight-line path? See Figure 1 for a visual depiction.

Figure 1: Missile path for α = π
6

1

https://github.com/GLaDOS-42

2 Solution

Let r⃗ be a vector representing the current position of the missile. Normally we would
move in the direction of −r⃗, or the vector pointing towards the origin. However, we’re
shifted by the angle of α, so we multiply −r⃗ by the rotation matrix T :

T (α) =

[
cosα − sinα
sinα sinα

]
T can be derived through standard linear algebra, see subsection 3.1 of the appendix.

2.1 Differential Equation Setup

So if our current position is r⃗n at index n, we have the following recurrence for the next
position over an infinitesimal step size:

r⃗n+1 = r⃗n + T (α)(− r⃗n
∥r⃗n∥

)∆s (1)

where we normalize the direction by dividing by its magnitude, and step ∆s, the amount
we move the direction. Since we assume the direction doesn’t change over our small
enough step, then ∆s is exactly the distance we move along the curve, or the arc length
of the curve. Subtracting r⃗n from both sides and dividing by ∆s,

r⃗n+1 − r⃗n
∆s

= T (α)(− r⃗n
∥r⃗n∥

)

In the limit as ∆s tends towards 0, then this becomes a differential equation:
dr⃗

ds
= −T (α)(

r⃗

∥r⃗∥
) (2)

However, equation (2), the differential equation parameterized in terms of arc length,
is difficult to solve, since we’re dividing by a highly nonlinear term. Instead, it would be
nice if the equation looked something like this, without the magnitude term:

dr⃗

dt
= −T (α)r⃗ (3)

Luckily, I’ve hinted how we can use equation (3) without ∥r⃗∥: it simply represents
a different parameterization of the same underlying curve, in particular in “time” rather
than in arc length. We know the arc length is the sum of changes over time:

s(t) =

∫ t

0

∥∥r⃗′(τ)∥∥ dτ
so by taking the derivative, we recover the integrand:

ds

dt
=

∥∥r⃗′(t)∥∥
We know the what the derivative of r⃗ is from differential equation (3),

= ∥−T (α)r⃗∥

2

Because a rotation doesn’t change the magnitude of the vector, this is simply
= ∥r⃗∥

So if we interpret r⃗(t) as a different parameterization, namely, r⃗(
∫ t
0 ∥r⃗

′(τ)∥ dτ), then
dr⃗

dt
=

dr⃗

ds

ds

dt

Expanding dr⃗
ds from differential equation (2),

= −T (α)(
r⃗(s)

∥r⃗(s)∥
)∥r⃗(s(t))∥

= −T (α)r⃗(s(t))

= −T (α)r⃗(t)

The interesting thing is that the differential equation does not care which parameter we
access r⃗ from, but only its actual position. Obviously r⃗(s) and r⃗(t) are equivalent if they
give the same vector r⃗, as r⃗(s(t)) is parameterized in t but through the intermediate s.

From this exercise we realize that the differential equation (3) without ∥r⃗∥ is just a
different parameterization of the same curve, where t varies from 0 to ∞, as the derivative
dr⃗
dt becomes progressively smaller, contributing less and less to the arc length.

In general, suppose we have an arbitrary parameterization r⃗(f(t)) where f must
fulfill certain properties: it must be monotonically increasing so that increasing t goes
in the same direction as the original curve, and so that f is bijective, i.e. we transition
continuously and without overlap, so f ′(t) > 0. In that case, by chain rule,

dr⃗(f(t))

dt
= f ′(t)r⃗′(f(t))

Expanding from the differential equation (3),
= f ′(t)[−T (α)]r⃗(f(t))

So multiplying by an everywhere positive arbitrary scalar function f ′(t) only changes
the parameterization of r⃗, and the specific parameterization can be recovered with
r⃗(
∫ t
0 f

′(τ) dτ) = r⃗(f(t)). If we think from the perspective of computational simula-
tion, this is adaptively changing the step size. Assuming we update with the discrete
update (1), then the precision of our updates is how small ∆s is. If we multiply the right
side of the differential equation by some factor, then that is equivalent to multiplying ∆s
by the factor, making the step size larger or smaller, which does not change the actual
shape of the curve. In practice, if ∆s is too big, then the process will diverge from the
actual answer, but in the limit as ∆s approaches 0, all parameterizations will converge.

To summarize, we have argued through the lens of parameterization and step size
that instead of solving the differential equation (2), we solve the simpler equation (3):

dr⃗

ds
= −T (α)(

r⃗

∥r⃗∥
)

dr⃗

dt
= −T (α)r⃗

3

2.2 Solving the Differential Equation

The differential equation is a first-order linear system of equations, so we can solve it
straightforwardly with linear algebra like in Differential Equations and Geosystems.

If we start at some initial point (x0, y0), then we have the initial value problem:

r⃗(0) =

[
x0
y0

]
dr⃗

dt
= −T (α)r⃗

Solving for eigenvalues of −T (α), we use the characteristic equation:

det(−T (α)− λI) =

∣∣∣∣− cosα− λ sinα
− sinα − cosα− λ

∣∣∣∣ = 0

(− cosα− λ)2 + sin2 α = 0

− cosα− λ =
√

− sin2 α

λ = −(cosα± i sinα)

Taking λ = − cosα+ i sinα arbitrarily, we solve for its associated eigenvector:[
−i sinα sinα
− sinα −i sinα

]
x⃗ = 0⃗

Letting x⃗1 = 1, then
−i sinα+ x⃗2 sinα = 0

x⃗2 = i

x⃗ =

[
1
i

]
=

[
1
0

]
+ i

[
0
1

]
From here, we can get two linearly independent solutions, as described in subsection

4.1 of Differential Equations and Geosystems: if the eigenvalue λ is of the form a + bi
and its associated eigenvector is of the form u⃗1 + iu⃗2, then the solutions are:

r⃗1 = eat[u⃗1 cos bt− u⃗2 sin bt]

r⃗2 = eat[u⃗2 cos bt+ u⃗1 sin bt]

Plugging in with our particular eigenvalue and eigenvector, and letting γ = b = sinα,

r⃗1 = e(− cosα)t[

[
1
0

]
cos γt−

[
0
1

]
sin γt]

r⃗2 = e(− cosα)t[

[
0
1

]
cos γt+

[
1
0

]
sin γt]

4

https://stephen-huan.github.io/assets/pdfs/cs-lectures/math/diffy-geosystems/geosystems.pdf

Simplifying,

r⃗1 = e
(− cosα)t

 cos γt
− sin γt



r⃗2 = e
(− cosα)t

sin γt
cos γt


Our general solution is a linear combination of the two:

r⃗(t) = c1r⃗1(t) + c2r⃗2(t)

Solving for the coefficients by plugging in the initial condition,

r⃗(0) =

[
x0
y0

]
= c1r⃗1(0) + c2r⃗2(0)

= c1e
0

[
1
0

]
+ c2e

0

[
0
1

]
=

[
c1
c2

]
=⇒ c1 = x0, c2 = y0

So our final solution is just:

r⃗(t) = e(− cosα)t[x0

[
cos γt
− sin γt

]
+ y0

[
sin γt
cos γt

]
] (4)

A bit of intuition about this solution. First, we assume |α| < π
2 . If α = π

2 , then the
missile moves in a circle, and any greater in absolute value means it will go further and
further away instead of going towards the origin. Assuming |α| < π

2 , then 0 < cosα ≤ 1,
so cosα represents the decay factor. r⃗(t) is of the form e(− cosα)t times a vector. We will
verify later that the magnitude of the vector is always just the initial distance,

√
x20 + y20.

So we get closer to the origin only through the scalar multiple, as cosα is strictly positive,
so as time increases e(− cosα)t grows exponentially smaller. The larger cosα is (or the
smaller α is), the quicker the term grows smaller, so the faster it decays to the origin.

2.3 Calculating Arc Length

Since we want to know how long the missile takes to reach the origin, we just need to
calculate the length of the curve — the missile moves at constant speed, so the time it
takes is just the length divided by the speed, v. Using the explicit r⃗(t) we computed,

s(t) =

∫ t

0

∥∥r⃗′(τ)∥∥ dτ
We know the what the derivative of r⃗ is from the differential equation,

=

∫ t

0
∥−T (α)r⃗(τ)∥ dτ

5

Because a rotation doesn’t change the magnitude of the vector, this is simply

=

∫ t

0
∥r⃗(τ)∥ dτ

Computing ∥r⃗(τ)∥ directly,

∥r⃗(t)∥ =

∥∥∥∥e(− cosα)t[x0

[
cos γt
− sin γt

]
+ y0

[
sin γt
cos γt

]
]

∥∥∥∥
= e(− cosα)t

∥∥∥∥[x0 cos γt+ y0 sin γt
−x0 sin γt+ y0 cos γt

]∥∥∥∥
= e(− cosα)t

√
(x0 cos γt+ y0 sin γt)2 + (−x0 sin γt+ y0 cos γt)2

Because the cross terms cancel,

= e(− cosα)t
√

x20(cos
2 γt+ sin2 γt) + y20(cos

2 γt+ sin2 γt)

= e(− cosα)t
√

x20 + y20

Substituting back into s(t), and taking t to infinity to get the entire length of the curve,

lim
t→∞

s(t) = lim
t→∞

∫ t

0
e(− cosα)τ

√
x20 + y20 dτ

=
√

x20 + y20 lim
t→∞

∫ t

0
e(− cosα)τ dτ

=
√

x20 + y20 lim
t→∞

[− 1

cosα
e(− cosα)τ]t0

=

√
x20 + y20
cosα

lim
t→∞

[e(− cosα)τ]0t

=

√
x20 + y20
cosα

So the time the missile will take to reach the origin at a constant speed of v is just

tarc =

√
x20 + y20
v cosα

Since the missile starts at the point (x0, y0), without the angle, it would take

tnormal =

√
x20 + y20
v

We conclude that it would take
tarc

tnormal
=

1

cosα

times longer than it otherwise would.

6

3 Appendix

3.1 Rotation Matrices

We know a rotation is a linear transformation, from geometric intuition: rotating a
scaled vector is equivalent to scaling the rotated vector, and adding two vectors and then
rotating is equivalent to rotating both vectors and then adding. So we can parameterize
the transformation as a matrix by just seeing what it does to the basis vectors:

T (

[
1
0

]
) =

[
cosα
sinα

]
and for (0, 1), we know (1, 0) maps to (x, y), so we can map (0, 1) to (y, x) and negate an
entry to keep the dot product 0 (orthogonal). To determine which entry to negate, if we
imagine α = π

4 , then (0, 1) will map to negative x and positive y so we map to (−y, x)

T (

[
0
1

]
) =

[
− sinα
cosα

]
So our matrix T is just

T =

[
T (

[
1
0

]
) T (

[
0
1

]
)

]
=

[
cosα − sinα
sinα cosα

]
3.1.1 Rotation Matrices as Change of Basis

Another derivation is to see a rotation as a change of basis. The idea is that when we do
rotations, the coordinate system also rotates, forming a new basis, and the coordinates in
our new basis are the same as the coordinates in our old basis, which can be seen in Fig-
ure 2. If B = {(1, 0), (0, 1)} is the standard basis and B′ = {(cosα, sinα), (− sinα, cosα)}
is our rotated basis, then we are claiming:

[x⃗]B = [TB→Bx⃗B]B′

= (B′)−1TB→B[x⃗]B

If this is true for all [x⃗]B, then we know
(B′)−1TB→B = I

T = B′

7

Figure 2: A vector with coordinates in the standard basis, then rotated, has the same
coordinates in the rotated basis since the basis vectors rotate with the vector.

4 Code

The code is fairly simple; we start at the initial position and update according to equation
(1), arbitrarily taking a (relatively) small step size of 10−3. This yields the same curve
as if we multiplied by ∥r⃗∥ or if we used the analytic form in equation (4). To determine
when to stop the simulation, we can end after a certain number of iterations or after
convergence (when we are a certain ε distance from 0⃗, which is equivalent to checking
∥r⃗∥ < ε). To numerically compute the arc length, we assume our step size is small enough
such that when moving to the next point, we assume the curve is perfectly approximated
by the line between the next point and the current point, i.e. the direction hasn’t changed
in between. We simply sum up the lengths of the adjacent pairwise steps ∥r⃗n+1 − r⃗n∥.
Finally, we record each r⃗i and graph each point in Matplotlib to generate Figure 1.

8

simulation code
from typing import Callable
import numpy as np
import matplotlib.pyplot as plt

P0 = np.array([1, 1]) # initial position
ALPHA = np.deg2rad(60) # angle
VEL = 1e-3 # velocity
MAX_ITERS = 10**5 # maximum number of iterations
EPSILON = 1E-3 # distance until convergence

rotation matrix
T = np.array([[np.cos(ALPHA), -np.sin(ALPHA)],

[np.sin(ALPHA), np.cos(ALPHA)]])

def update1(r: np.array) -> np.array:
""" Updates the position with a normalized velocity. """
return r + -VEL*T@(r/np.linalg.norm(r))

def update2(r: np.array) -> np.array:
""" Updates the position with proportional velocity. """
return r + -VEL*T@r

def curve(t: float) -> np.array:
""" Analytical parametrization of the missile's path. """
gamma = np.sin(ALPHA)
x = P0[0]*np.array([np.cos(gamma*t), -np.sin(gamma*t)])
y = P0[1]*np.array([np.sin(gamma*t), np.cos(gamma*t)])
return np.exp(-t*np.cos(ALPHA))*(x + y)

def simulate(update: Callable[[np.array], np.array],
criterion: str="iterations", max_iters: int=MAX_ITERS) -> tuple:

""" Simulates the missile's path by discrete sampling. """
iters = lambda t, r: t < max_iters
criteria = {

"iterations": iters,
"distance": lambda t, r: np.linalg.norm(r) > EPSILON and iters(t, r),

}
criterion = criteria.get(criterion, criteria["iterations"])

points = [P0]
arc_length = 0
t = 0
while criterion(t, points[-1]):

points.append(update(points[-1]))
arc_length += np.linalg.norm(points[-1] - points[-2])
t += 1

return tuple(zip(*points)), arc_length, t

def sample(curve: Callable[[float], np.array],
start: float, stop: float, step: float) -> zip:

""" Samples a parameterized curve along an interval. """
return zip(*(curve(t) for t in np.arange(start, stop, step)))

9

if __name__ == '__main__':
(x1, y1), _, iters = simulate(update1, "iterations", 10000)
(x2, y2), arc_length, iters = simulate(update2, "distance")
print(f"arc length/initial distance: {arc_length/np.linalg.norm(P0):.3f}")
print(f"{' '*18}1/cos({np.rad2deg(ALPHA):.0f}): {1/np.cos(ALPHA):.3f}")

fig, ax = plt.subplots()
ax.set_aspect("equal")

plt.plot(*((np.arange(0, 1, 0.01),)*2), "bo", label=r"$\alpha = 0$")
plt.plot(x1, y1, "bo", label="arc length")
plt.plot(x2, y2, "go", label=r"simulated")
plt.plot(*sample(curve, 0, 10, 0.1), "ro", label="analytical")

plt.title(r"Missile Trajectory for $\alpha = \pi/6$")
plt.xlabel("x")
plt.ylabel("y")
plt.legend()
plt.tight_layout()
plt.savefig("missile.png")
plt.show()

10

	Problem Statement
	Solution
	Differential Equation Setup
	Solving the Differential Equation
	Calculating Arc Length

	Appendix
	Rotation Matrices
	Rotation Matrices as Change of Basis

	Code

