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The problem: Gaussian process regression

Measurements yTr at N points XTr

Estimate unseen data yPr at XPr

Model as Gaussian process
→ condition on yTr
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Cubic bottleneck

Closed-form conditional distribution:

E[yPr | yTr] = µPr +ΘPr,TrΘ
−1
Tr,Tr(yTr − µTr)

ΘPr,Pr|Tr := Cov[yPr | yTr] = ΘPr,Pr −ΘPr,TrΘ
−1
Tr,TrΘTr,Pr

Kernel function K(·, ·): Θi,j := K(xi,xj)

Computational cost scales as N3
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Conditional k-th nearest neighbors

Naive: select k closest points

Chooses redundant information

Maximize mutual information!
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Mutual information

Mutual information or information gain:

I[yPr;yTr] = H[yPr]−H[yPr | yTr]

Entropy increases with log determinant of covariance

Information-theoretic EV-VE identity:

H[yPr] = H[yPr | yTr] + I[yPr;yTr]

Var[yPr] = E[Var[yPr | yTr]] + Var[E[yPr | yTr]]



Mutual information

Mutual information or information gain:

I[yPr;yTr] = H[yPr]−H[yPr | yTr]

Entropy increases with log determinant of covariance

Information-theoretic EV-VE identity:

H[yPr] = H[yPr | yTr] + I[yPr;yTr]

Var[yPr] = E[Var[yPr | yTr]] + Var[E[yPr | yTr]]



Mutual information

Mutual information or information gain:

I[yPr;yTr] = H[yPr]−H[yPr | yTr]

Entropy increases with log determinant of covariance

Information-theoretic EV-VE identity:

H[yPr] = H[yPr | yTr] + I[yPr;yTr]

Var[yPr] = E[Var[yPr | yTr]] + Var[E[yPr | yTr]]



Greedy mutual information maximization

Greedy selection, maintain selected indices I

Criterion simplifies to:

argmax
j ̸∈I

Θ2
j,Pr|I

Θj,j|I

Direct computation: O(Nk4)

Storing a partial Cholesky factor: O(Nk2)
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Conditioning as rank-one update

Key idea: assume we have Θ|I , rank-one update to Θ|I∪{k}

Θ:,:|I∪{k} = Θ:,:|I −Θ:,k|IΘ
−1
k,k|IΘk,:|I

u =
Θ:,k|I√
Θk,k|I

Θ|I∪{k} = Θ|I − uu⊤



Efficient computation from Cholesky factor

Statistical interpretation of Cholesky factorization:

chol(Θ) =

(
I 0

Θ2,1Θ
−1
1,1 I

)(
chol(Θ1,1) 0

0 chol(Θ2,2 −Θ2,1Θ
−1
1,1Θ1,2)

)
=

(
chol(Θ1,1) 0

Θ2,1 chol(Θ1,1)
−⊤ chol(Θ2,2 −Θ2,1Θ

−1
1,1Θ1,2)

)

Store partial Cholesky factor L

Li =
Θ:,k|:i√
Θkk|:i
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Algorithm
Indices I, select k, ith iteration, have:

Conditional covariances Θ:,Pr|I

Conditional variances diag(Θ:,:|I)

First i− 1 columns of L

Update L

L:,i ← Θ:,k − L:,:i−1L
⊤
k,:i−1

Update conditional values for candidate j

Θjj|I∪{k} ← Θjj|I − L2
j,i

Θj,Pr|I∪{k} ← Θj,Pr|I − Lj,iLPr,i
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Extending to multiple prediction points
Objective conditional log determinant of prediction points

logdet
(
ΘPr,Pr|I∪{k}

)
= logdet

(
ΘPr,Pr|I −

ΘPr,k|IΘ
⊤
Pr,k|I

Θkk|I

)

By the matrix determinant lemma,

= logdet
(
ΘPr,Pr|I

)
+ log

(
1−

Θ⊤
Pr,k|IΘ

−1
Pr,Pr|IΘPr,k|I

Θkk|I

)

= logdet
(
ΘPr,Pr|I

)
+ log

(
Θkk|I −Θk,Pr|IΘ

−1
Pr,Pr|IΘPr,k|I

Θkk|I

)

By the quotient rule, we combine the conditioning:

= logdet
(
ΘPr,Pr|I

)
+ log

(
Θkk|I,Pr

Θkk|I

)
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Algorithm for multiple prediction points

Final objective simplifies to:

logdet
(
ΘPr,Pr|I∪{k}

)
− logdet

(
ΘPr,Pr|I

)
= log

(
Θkk|I,Pr

Θkk|I

)

Store two factors (one for numerator, one for denominator)

“Pre-condition” numerator factor on prediction points

Θkk|I,Pr = Θkk|Pr,I

Complexity of O(Nk2 +Nm2 +m3) for m prediction points
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Global approximation by KL-minimization
Approximate GP by sparse Cholesky factor of its precision

Measure resulting approximation accuracy by KL divergence:

L := argmin
L̂∈S

DKL

(
N (0,Θ)

∥∥∥N (0, (L̂L̂⊤)−1)
)

Using the optimal unique minimizer L from closed form:

Lsi,i =
Θ−1

si,sie1√
e⊤1 Θ

−1
si,sie1

Minimize variance of ith point, conditional on selected!

2DKL =

N∑
i=1

[
log
(
Θii|si−{i}

)
− log

(
Θii|i+1:

)]
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1F. Schäfer, M. Katzfuss, and H. Owhadi, “Sparse Cholesky factorization by
Kullback-Leibler minimization,” arXiv preprint arXiv:2004.14455, 2020



GP regression by Cholesky factorization

Lower triangular factor for precision: LL⊤ = Θ−1

Upper triangular factor for covariance: L−⊤L−1 = Θ

U = L−⊤, look at submatrices:

Θ = UU⊤ =

(
U11 U12

0 U22

)(
U⊤
11 0

U⊤
12 U⊤

22

)
=

(
U11U

⊤
11 + U12U

⊤
12 U12U

⊤
22

U22U
⊤
12 U22U

⊤
22

)
U22 = chol(Θ22)

U12 = Θ12U
−⊤

22

U11 = chol(Θ11|2)
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GP regression by Cholesky factorization
Write conditional terms:

E[y1 | y2] = Θ12Θ
−1
22 y2

= U12U
−1
22 y2

Cov[y1 | y2] = Θ11 −Θ12Θ
−1
22 Θ21

= U11U
⊤
11

Recall: U = L−⊤ so UL⊤ = L⊤U = I(
U11 U12

0 U22

)(
L⊤
11 L⊤

21

0 L⊤
22

)
=

(
L⊤
11 L⊤

21

0 L⊤
22

)(
U11 U12

0 U22

)
= I(

U11L
⊤
11 U11L

⊤
21 + U12L

⊤
22

0 U22L
⊤
22

)
=

(
I 0
0 I
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= I(

L⊤
11U11 L⊤

11U12 + L⊤
21U22
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GP regression by Cholesky factorization
Reading from submatrices,

U11 = L−⊤
11

U22 = L−⊤
22

U12 = −L−⊤
11 L⊤

21L
−⊤
22

Re-write conditional terms:

E[y1 | y2] = U12U
−1
22 y2

= (−L−⊤
11 L⊤

21L
−⊤
22 )L⊤

22y2

= −L−⊤
11 L⊤

21y2

Cov[y1 | y2] = U11U
⊤
11

= L−⊤
11 L−1

11

e⊤i Cov[y1 | y2]ej = (L−1
11 ei)

⊤(L−1
11 ej)



GP regression by Cholesky factorization
Reading from submatrices,

U11 = L−⊤
11

U22 = L−⊤
22

U12 = −L−⊤
11 L⊤

21L
−⊤
22

Re-write conditional terms:

E[y1 | y2] = U12U
−1
22 y2

= (−L−⊤
11 L⊤

21L
−⊤
22 )L⊤

22y2

= −L−⊤
11 L⊤

21y2

Cov[y1 | y2] = U11U
⊤
11

= L−⊤
11 L−1

11

e⊤i Cov[y1 | y2]ej = (L−1
11 ei)

⊤(L−1
11 ej)



Summary

Selection algorithm for Gaussian process regression

Drop-in replacement for k-th nearest neighbors

Leverage GP regression for sparse Cholesky factorization

Leverage Cholesky factorization for GP regression

Thank you!


