Fast Gaussian process regression by
Greedy Conditional Selection

Stephen Huan Florian Schéfer

Short & Sweet seminar

April 22, 2022

The problem: Gaussian process regression

Measurements y1, at N points X1,

® Xyrtrain
@ Xprpredict

=== conditional mean
20

X

The problem: Gaussian process regression

Measurements yt, at NV points X,

Estimate unseen data yp, at Xp, -

® X train
@ Xprpredict

=== conditional mean
20

X

The problem: Gaussian process regression

Measurements yt, at NV points X,
Estimate unseen data yp, at Xp,

Model as Gaussian process
— condition on yT,

>

® Xyrtrain
@ Xprpredict

=== conditional mean
20

X

Cubic bottleneck

Closed-form conditional distribution:

E[ypr | yTr] = pprt @PryTr@;rl,Tr(yTr - ﬂTr)

— — -1
@Pr,Pr\Tr = COV[yPr | yTr] - @Pr,Pr - @Pr,Tr@Tr’Tr(_)Tr,Pr

Cubic bottleneck

Closed-form conditional distribution:

E[ypr | yTr] = pprt @PryTr@;rl,Tr(yTr - ﬂTr)

— _ -1
@Pr,Pr\Tr := Cov[yp | y1v] = @Pr,Pr - @Pr,Tr@TrvTr(H)Tr,Pr

Kernel function K (-,-): ©;; = K(x;, ;)

Cubic bottleneck

Closed-form conditional distribution:

E[ypr | yTr] = pprt @PryTr@;rl,Tr(yTr - ﬂTr)

@Pr,Pr\Tr := Cov[yp | y1v] = @Pr,Pr - @Pr,Tr@;r%Tr('“)Tr,Pr
Kernel function K (-,-): ©;; = K(x;, ;)

Computational cost scales as N3

Screening effect

“Screening effect”

Screening effect

“Screening effect” I

Choose k points e

Conditional k-th nearest neighbors

Naive: select k closest points oo

Conditional k-th nearest neighbors

/'\

Naive: select k closest points oo’

Chooses redundant information

Conditional k-th nearest neighbors

/‘\

Naive: select k closest points oo’
Chooses redundant information
Maximize mutual information!
() [7Y)
[J

Conditional k-th nearest neighbors

Naive: select k closest points o
Chooses redundant information

Maximize mutual information!

Mutual information

Mutual information or information gain:

I[yPr; yTr] = H[yPr] - H[yPr ‘ yTr]

Mutual information

Mutual information or information gain:
I[yPr; yTr] = H[yPr] - H[yPr ‘ yTr]

Entropy increases with log determinant of covariance

Mutual information

Mutual information or information gain:

lype; yre] = Hlyer] — Hlyer | y7i]
Entropy increases with log determinant of covariance
Information-theoretic EV-VE identity:

+ I[yPr'f yTr}
- + Var[Elyp |]

Greedy mutual information maximization

Greedy selection, maintain selected indices I

Greedy mutual information maximization

Greedy selection, maintain selected indices I

Criterion simplifies to:

2

6j,Pr|I

argmax @—
J¢1 7.l

Greedy mutual information maximization

Greedy selection, maintain selected indices

Criterion simplifies to:
2
@j,Pr|I
argmax @7
JE! 7l

Direct computation: O(NEk*)

Greedy mutual information maximization

Greedy selection, maintain selected indices

Criterion simplifies to:

2
@j,Pr|I
argmax @7
J¢1 7.l

Direct computation: O(NEk*)

Storing a partial Cholesky factor: O(Nk?)

Conditioning as rank-one update

Key idea: assume we have ©|;, rank-one update to O}

O..;1u{ky = O..1r — 9;,ku@;;i|1@k,:|1
6:,k|l

Ok k|1

Ojrugky = O —uu’

Efficient computation from Cholesky factor

Statistical interpretation of Cholesky factorization:
_ 1 0\ (chol(©1,1) 0
chol(©) = ((—)u(—);} 1> < 0 chol(

_ ChOl(@lyl) 0
T\ O, Chol(@171)7—r chol(©2,2 — @2,1@1_’}@1,2)

Efficient computation from Cholesky factor

Statistical interpretation of Cholesky factorization:

_ 1 0\ (chol(©1,1) 0
Ch(’l(@)—((—)u(—);} 1>< 0 chol())

o ChOl(@lA) 0
o O21 ChOl(@Ll)i—r Ch01(®272 — @2’1@1_’}@1,2)

Store partial Cholesky factor L

O. k-

Li=
Okk|:i

Algorithm

Indices I, select k, ith iteration, have:
Conditional covariances ©. py;
Conditional variances diag(®. ;;)

%

First : — 1 columns of L

Algorithm

Indices I, select k, ith iteration, have:
Conditional covariances ©. py;

Conditional variances diag(®. ;;)
First i — 1 columns of L

Update L

T
L:,Z' < @:,k - L:,:i—lLkﬁifl

Algorithm

Indices I, select k, ith iteration, have:
Conditional covariances ©. py;

Conditional variances diag(®. ;;)
First i — 1 columns of L
Update L
Li+ O —LiiaLl, 4
Update conditional values for candidate j

2
Ojjiuky < Oy — L,

O;prirufky ¢ Ojprr — LjiLpr

Extending to multiple prediction points

Objective conditional log determinant of prediction points

T
@Pr,kII@Pr,ku)

logdet (Opr,prrugry) = logdet <@pr,pru " o

Extending to multiple prediction points

Objective conditional log determinant of prediction points

T
@Pr,kII@Pr,ku)

logdet (Opy,prugky) = logdet (@Phpru "

By the matrix determinant lemma,

T —1
@Pr,ku@Pr,Pru@Pnk\I
Okk|1

= logdet (@p,,pru) + log <1 —

1
Oklr = Ok,pr|1Opy py 1 OPr il
Okk|1

= logdet (Gpr,pru) + log (

Extending to multiple prediction points

Objective conditional log determinant of prediction points

-
@Pr,kII@Pr,ku)

logdet (Opy,prugky) = logdet <9P“P'|I B Ork|1

By the matrix determinant lemma,

T —1
@Pr,ku@Pr,Pru@Pnk\I
Okk|1

= logdet (@p,,pru) + log <1 —

1
Ork|r — @k,PrIG)p,,p”@Pr,kI)

= logdet (Opypyr) + log < Ok

By the quotient rule, we combine the conditioning:

S '
= logdet (@Pr7pr|[) + log <kk[P>
Ok

Algorithm for multiple prediction points

Final objective simplifies to:

Okk|1,p
logdet (Opypriruiky) — logdet (Opypyr) = log <%>
kI

Algorithm for multiple prediction points

Final objective simplifies to:

@kk|1,Pr>

logdet (@Pr,PrUU{k}) — IOgdet (@Pr,PrU) = lOg < @kk|1

Store two factors (one for numerator, one for denominator)

Algorithm for multiple prediction points

Final objective simplifies to:

Opkl1,Pr
logdet (Opy.prirugry) — logdet (Opypyr) = log <@>
kk|I
Store two factors (one for numerator, one for denominator)
“Pre-condition” numerator factor on prediction points

Opki1,pr = Okk|Pr,I

Algorithm for multiple prediction points

Final objective simplifies to:

@kk|1,Pr>

logdet (@Pr,PrUU{k}) — IOgdet (@Pr,PrU) = lOg < @kk‘|[

Store two factors (one for numerator, one for denominator)
“Pre-condition” numerator factor on prediction points

Opki1,pr = Okk|Pr,I

Complexity of O(Nk? + Nm? +m?) for m prediction points

Global approximation by KL-minimization
Approximate GP by sparse Cholesky factor of its precision

Global approximation by KL-minimization
Approximate GP by sparse Cholesky factor of its precision

Measure resulting approximation accuracy by KL divergence:

L= argmin Dkl (./\/(O, 0) H N(O0, (fzsz)_l))
LeS

Global approximation by KL-minimization
Approximate GP by sparse Cholesky factor of its precision

Measure resulting approximation accuracy by KL divergence:
L := argmin Dy (./\/(O, 0) H N0, (ﬁf/T)_l))
Les
Using the optimal unique minimizer L from closed form:

ot e
Si,84
Lsi7i = = - 1
T —
e] O5,5,€1

Global approximation by KL-minimization
Approximate GP by sparse Cholesky factor of its precision

Measure resulting approximation accuracy by KL divergence:
L := argmin Dy (./\/(O, 0) H N0, (ﬁf/T)_l))
Les
Using the optimal unique minimizer L from closed form:

-1
T ..€e1
[84,8
Si,i e

Ta-—1
e; O5,.s.€1

Minimize variance of ith point, conditional on selected!

N
2Dk = Z [log (Qzﬂsi—{i}) — log (@z'z'|z'+1:)]

i=1

Cholesky factorization by selection

Apply column-wise directly

— naive
—— selection

KL-divergence

2 4 6 8
o (number selected)

Cholesky factorization by selection

m
%0
|
|
|
Apply column-wise directly]
[|
Improves approx. algorithm of ! o' _
[0} —— naive
e —— selection
] 2
210
()
=
% o
—
210

2 4 6 8
o (number selected)

Cholesky factorization by selection

Apply column-wise directly

Improves approx. algorithm of 1 s
p pp g 0,10 ——— naive

e —— selection
o 2

D10

(0]

2

T .

|

210

2 4 6 8
P (number selected)

1F. Schifer, M. Katzfuss, and H. Owhadi, “Sparse Cholesky factorization by
Kullback-Leibler minimization,” 2rX/v preprint arXiv:2004.14455, 2020

GP regression by Cholesky factorization

Lower triangular factor for precision: LLT = ©~!

GP regression by Cholesky factorization

Lower triangular factor for precision: LLT = ©~!

Upper triangular factor for covariance: L~ TL~1 =0

GP regression by Cholesky factorization

Lower triangular factor for precision: LLT = ©~!
Upper triangular factor for covariance: L= L™ = ©

U=1L"T, look at submatrices:

Un U uj, o
o-ov= (3 1) (o o)
~(UnU | + UpU)y, UpUy,
B (UnUy, U22U2T2>
Usg = chol(O22)
Up = @12U2_2T
U1 = chol(©1;2)

GP regression by Cholesky factorization

Write conditional terms:

E[y | y2] = 01205, v
= U1oUsy yo
Cov[yi | y2] = ©11 — 01205, Oa1
= U U

GP regression by Cholesky factorization

Write conditional terms:
Ely: | yo] = 01205, y2
= U1oUsy yo
Cov(y: | ya2] = O11 — 01205, Oz
= UL Uy,

Recall U=L Tso UL =LTU =1

U Uiz L1T1 Lj, _ Ly L\ (Un Ui 7
0 Uy Lgs 0 Li)\ 0 U
11L11 Uni1Lg;, + UiaLgy _(f 9 _;
UsaLg, 0 I
Un L{yUiz + Ly U\ _ (T 0\ _,
LayUss 0 I

GP regression by Cholesky factorization
Reading from submatrices,
Unn =Ly
Uy = Ly

Uiz = _L1_1TL2TlL2_2T

GP regression by Cholesky factorization

Reading from submatrices,

Un =Ly
Uss = L'
Uiz = _L1_1TL;1L2_2T

Re-write conditional terms:
Ely1 | y2] = Ur2Uz,' ya
= (—LI1TL2T1L52T)L2TQy2
= —LﬁTL;yQ
Covlys | y2] = UnnUY|
= LflTLfll

e; Covly | yole; = (Lii'e:) (Lii'e))

Summary

Selection algorithm for Gaussian process regression
Drop-in replacement for k-th nearest neighbors
Leverage GP regression for sparse Cholesky factorization
Leverage Cholesky factorization for GP regression

Thank you!

