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1 Introduction

If you are confused, read this first.

2 Eigenvalues

Definition 2.1. The graph representation of permutation matrices.

Let P be a permutation matrix and π be a permutation which represents that matrix.
The permutation graph of π is defined as follows: create a node for each number in π.
Then, a directed edge between (u, v) exists if u is in the position that v occupied before
the permutation. For example, let:

π =

(
1 2 3 4 5
3 5 1 2 4

)
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Figure 1: Permutation graph for π

Every node in the permutation graph has an indegree of 1 and an outdegree of 1
since each node can only occupy one position, and, correspondingly, each position can
only be occupied by one node.
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Lemma 2.1. Each connected component in the permutation graph must be a cycle, i.e.,
a circular linked list such that moving from any node brings one back to the same node.

Proof. Because the outdegree of each node is 1, there is only one path away from the
node. Suppose for the sake of contradiction that it is possible to start from a node and
never return to that node. Since there are a finite number of nodes, there must be a
cycle in the graph which does not go through the start. Take the point at which a node
not contained in the cycle points to a node in the cycle. The node in the cycle must have
an indegree of two, since it has a node in the cycle pointing to it and a node outside of
the cycle. This violates the property that every node has an indegree of one, proving
our original assumption is impossible. �

Corollary 2.1.1. Any permutation can be written as the product of cycles C1C2 . . . Cn.

Theorem 2.2. The real eigenvalues of a permutation matrix can only be 1 or -1.

Proof. Consider the sum of the absolute value of each entry in a vector, which is invari-
ant under multiplication by a permutation matrix because a permutation matrix only
permutes the order of the entries in a vector, and addition is commutative. Suppose P is
a permutation matrix, λ is an eigenvalue, and v is an eigenvector of λ. By the definition
of an eigenvalue, P = λv.

Computing the sum of the absolute value of each entry in v:

n∑
i=1

|λvi| =
n∑
i=1

|vi|

|λ|
n∑
i=1

|vi| =
n∑
i=1

|vi|

|λ| = 1

λ = −1, 1

�

Lemma 2.3. Every permutation matrix has an eigenvalue of 1.

Proof. Consider a vector of all 1’s. Permuting this vector yields the same vector, so it
is an eigenvector of eigenvalue 1 by definition. �

Lemma 2.4. The number of linearly independent eigenvectors for an eigenvalue of 1
for a permutation matrix is the number of cycles in the corresponding permutation.

Proof. Each cycle is independent of any other cycle, therefore each cycle is a free variable
in the solution to the homogeneous equation P − λI. The number of free variables
determines the number of eigenvectors. �

Lemma 2.5. A permutation matrix has an eigenvalue of -1 if and only if it has at least
one even length cycle.
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Proof. First, consider the case of an even length cycle. Start at an arbitrary node, and
assign it a value of 1 WLOG. The node that the starting node points to must now be
assigned a value of -1, so that when the starting node exchanges positions with the node
it points to the vector appears to have negated at these two positions. Continuing the
chain, each node is assigned a 1 or -1 value in alternating fashion. When one reaches
the start node again, it will be to assign it a value of 1 because the cycle length is even.

Second, consider an odd length cycle. It is not possible to assign a node with a value
unequal to 0, since assigning the alternating signs will end up attempting to assign the
start node a value negative of the initially assigned value. Thus, the only way to make
odd length cycles consistent with an eigenvalue of -1 is to assign each node in an odd
length cycle the value 0. If a vector is composed of only odd length cycles, then it will
be the zero vector, which is not an eigenvector by definition.

Therefore, the only way to have an eigenvalue of -1 is if there exists at least one even
length cycle, and if there is at least one even length cycle, it is possible to construct an
eigenvector such that permuting the vector negates it, as discussed above. �

Lemma 2.6. The number of linearly independent eigenvectors for an eigenvalue of -1
for a permutation matrix is the number of even length cycles in the permutation.

Proof. Since each element in an odd length cycle must necessarily be 0, they are not free
variables and do not contribute eigenvectors.

The proof for even length cycles follows similar to lemma 4. �

Lemma 2.7. The number of eigenvectors a particular entry contributes is 1 for a cycle
length of 1, 1 for a cycle length of 2, and less than 1 for a length greater than 2.

Proof. The only eigenvalues of permutation matrices are 1 and -1 by theorem 2, so we
only need to consider the eigenvectors of eigenvalue 1 and -1.

By lemma 4, eigenvalue 1 contributes the number of eigenvectors equal to the number
of cycles, and by lemma 6, eigenvalue -1 contributes the number of even length cycles.

Let C be the cycle length. A cycle of length C also has C entries, so if N is the
number of eigenvectors the cycle contributes, the number an entry contributes is N

C .
Evaluating for C = 1, there is 1 cycle and 0 even length cycles so each entry con-

tributes N
C = 1

1 = 1 eigenvectors. For C = 2, there is 1 cycle and 1 even length cycle so
each entry contributes N

C = 2
2 = 1 eigenvectors. Finally, for C > 2, N is at most 2 and

C > 2, so N
C < 1. �

Corollary 2.7.1. The maximum number of eigenvectors an entry can contribute is 1.
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Lemma 2.8. If π = C1C2 . . . Cn, and each cycle has a length of l1, l2, . . . , ln, then the
smallest k such that P kπ = I is equal to lcm(l1, l2, . . . , ln).

Proof. Take an arbitrary cycle, and put a pointer at an arbitrary node. Multiplying by
the permutation matrix will move this pointer by one edge to the node it is directed
towards, so it will take the length of the cycle to reach the start node again. Thus, for
some cycle length l and some power k, P k = I if and only if k mod l ≡ 0. For that
to be true for each cycle length, k must be at least lcm(l1, l2, . . . , ln), and that is the
minimum k can be for k to be divisible by each li. �

Theorem 2.9. A permutation matrix P is diagonalizable under R if and only if P 2 = I.

Proof. A matrix of dimension NxN is diagonalizable if and only if it has N linearly
independent eigenvectors. There are exactly N entries, and because of corollary 7.1, the
maximum number of eigenvectors is N . In order to achieve the upper limit of N , each
entry needs to contribute 1 eigenvector. If there is a cycle of length > 2, then there exists
an entry which contributes less than 1 eigenvector, making it impossible to achieve N
eigenvectors in total.

Therefore, each cycle must be of length ≤ 2. By lemma 8, the smallest k such that
P k = I is lcm(l1, l2, . . . , ln). If li ≤ 2, then k ≤ 2, so k = 1 or k = 2. In either case,
P 2 = I. Working backwards, if P 2 = I, that implies k ≤ 2 which implies that each cycle
length is ≤ 2, making P diagonalizable. �

3 Application

The common application for diagonalization is fast exponentiation.

Lemma 3.1. The exponentiation of a diagonal matrix is the exponentiation of each
entry on the diagonal.

Proof. Let the inductive hypothesis be that

D =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn

 and that Dk =


dk1 0 . . . 0
0 dk2 . . . 0
...

...
. . .

...
0 0 . . . dkn



Dk+1 = DDk =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn



dk1 0 . . . 0
0 dk2 . . . 0
...

...
. . .

...
0 0 . . . dkn

 =


dk+1
1 0 . . . 0

0 dk+1
2 . . . 0

...
...

. . .
...

0 0 . . . dk+1
n


Since D1 is equal to each entry on the diagonal being raised to the first power, the

lemma is true for all integer powers ≥ 1. �
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Corollary 3.1.1. If exponentiation to the power of k can be done in O(log k), matrix
exponentiation of a diagonal matrix can be done in O(n log k).

Theorem 3.2. If A = PDP−1, Ak = PDkP−1.

Proof. Let the inductive hypothesis be that Ak = PDkP−1.
Ak+1 = AAk = PDP−1(PDkP−1) = PDk+1P−1.

Since A1 = PD1P−1, the theorem is true for all integer k ≥ 1. �

Corollary 3.2.1. If matrix multiplication can be done in time O(nz), and A = PDP−1,
Ak can be computed in time O(nz + n log k) by corollary 3.1.

The lower bound for general matrix multiplication is not known, but an obvious one
is O(n2). In general, it is O(nz) for some 2 ≤ z ≤ 3. A matrix exponentiation algorithm
not relying on diagonalization is given below, instead using repeated squaring to achieve
the same result. The running time is O(nz log k), which is worse than the O(nz+n log k)
time given by the diagonalization algorithm.

Algorithm 1 Fast Matrix Exponentiation

def mat_exp(A: np.array, k: int) -> list:

v = np.identity(len(A))

while k > 0:

if k & 1 == 1:

v = v @ A

k >>= 1

A = A @ A

return v

However, note that it is possible to multiply two permutation matrices in O(n).
Represent each permutation matrix by its permutation π of length n. The algorithm
for multiplying two permutations π1 and π2 is then as follows: initialize an empty list.
Then, going over each element e of π2, append the value of π1 at index e to the list.

Algorithm 2 Permutation Multiplication

def mult(l1: list, l2: list) -> list:

return [l1[n] for n in l2]

Using this as a backend for repeated squaring, the final algorithm has a runtime of
O(n log k+n2), where the n2 term is a result of turning a permutation into a permutation
matrix and can be turned into O(n log k) if one is willing to modify the original matrix.
In diagonalization, however, one still needs to do general matrix multiplications, making
the running time O(n log k + nz) asymptotically worse.
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