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1 Rational

Apparently the Rubik’s cube is an “algebraic group” (which I will not pretend to
understand), and has certain mathematical properties. The most important in my opin-
ion is non-commutativity, or when a × b 6= b × a. For a simple example, note that
applying the sequence “R U” does not give the same result as applying “U R”. Such
“non-commutative algebra” is closely associated with things like Heisenberg’s Matrix me-
chanics, a formulation of quantum mechanics mathematically identical to Schrödinger’s
wave mechanics or Hamilton’s quaternions.

In my previous lecture I argued that a cubie-wise approach was simpler and more
abstract than a sticker-wise approach. However, my cubie approach is 3x9x3, making it a
tensor. Contrary to what Google wants you to believe, tensors are difficult to work with
and do not “flow”. A sticker-wise approach could be thought of as a 6x9 matrix, and
moves as other transformation matrices such that if S is a cube state and R a possible
turn of the cube S′ = SR.

The advantages are numerous. Solving the cube becomes a matrix factorization
problem - trying to decompose a single matrix which represents a a complex transition
from scrambled to solved into the product of many move matrices. Matrix multiplication
is a well-optimized operation in many different linear algebra libraries and is trivially
parallelized.

2 Example

Suppose A =

[
1 2
3 4

]
is a cube state and B =

[
2 1
4 3

]
is the cube state after a R

move. We are looking for a matrix X such that AX = B. Multiplying both sides on
the left by A′ yields A′AX = A′B which means X = A′B. After computing the inverse

X =

[
0 1
1 0

]
. X can be thought of as a 2-swap which swaps the first row as well as the

second row. Computing AX2 = A, AX3 = AX, etc.

However, if B =

[
2 1
3 4

]
solving for X yields X =

[
−1 2
1.5 −0.5

]
. By definition AX =

B, however AX2 6= A which would be expected of a swap. Further exponentiation
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of X results in gibberish. This can be interpreted as the limitation of “learning” a
transformation matrix: it cannot learn a single swap, only a two-swap.

The analogy to cubing is clear. Suppose we had a transformation matrix R which
applies a R-move on a given state of the cube S. R2 would literally be R2. R’ would be
R3 and R4 would be R4 as well as the identity matrix.

3 Experimentation

As stated previously, a stickermap is 6x9 or a non-square matrix. Therefore there
does not exist a traditional inverse, and more general methods must be used. In partic-
ular I tried the Moore-Penrose inverse as well as the two one-sided inverses.

3.1 Solved Cube

Starting with the solved cube given by:

0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5


and a R-turn on the solved cube given by:

0 0 5 0 0 5 0 0 5
1 1 1 1 1 1 1 1 1
4 2 2 4 2 2 4 2 2
3 3 3 3 3 3 3 3 3
4 4 0 4 4 0 4 4 0
5 5 2 5 5 2 5 5 2


using Srikar Gouru’s code ( ありがとう !).

I first computed the Moore-Penrose inverse but had no idea what to do with it. I
then attempted to compute both one-sided inverses, but for an one-sided inverse to exist
the rank of the matrix has to be the maximum possible for that size. A property of rank
is that rank(A) = rank(AT ), or that the columns rank is equal to the row rank. In this
case, the maximum rank is 6. Since each row of the matrix is linearly dependent on each
other row and each column is linearly dependent on each other column the rank of the
solved cube is 1.

3.2 Random Permutation

To rectify the rank problem I permuted each (i, j)→ (i′, j′) randomly.
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def transform(mapping, m):

new = [[0]*9 for i in range(6)]

for i in range(6):

for j in range(9):

x, y = mapping[(i, j)]

new[i][j] = m[x][y]

return np.array(new)

def gen_random(m=solved):

indexes = [(i, j) for i in range(6) for j in range(9)]

trans = {}

for i in range(6):

for j in range(9):

trans[(i, j)] = random.choice(indexes)

indexes.remove(trans[(i, j)])

return transform(trans, m), trans

To verify the invertibility of the new matrices, I wrote a function.

def invertible(m, tol=2):

m = np.array(m)

if np.linalg.matrix_rank(m) == 6:

return (round(np.linalg.det(m.T @ m), tol) != 0,

round(np.linalg.det(m @ m.T), tol) != 0)

return (False,)*2

It happened that the left inverse did not exist. The right inverse is defined by
Ar = AT (AAT )−1 with the result that AAr = AAT (AAT )−1 = I6. Given A as the solved
cube state and B the cube after a R-turn, AX = B, so X = ArB is the transformation
matrix.

However, repeated application of X was meaningless. Also, the permutation was
completely ad-hoc and mathematically meaningless.

3.3 Distinct Swaps

Recalling the simple 2x2 example, certain swaps are possible and certain other swaps
are impossible. I realized I could not possibly learn from the solved state → R-move off
because only 12 stickers move (the entire red face is unchanged). I would therefore need
a 20 sticker change, the maximum possible. To find such a state I defined the function
rdiff which returns the number of stickers which change before and after doing a R move
and applied my BFS defined in my earlier lecture.

c = cube.Cube()

states, alg = cube.solve(c, (None, lambda c: rdiff(c) >= 20), cube.HTM)
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c.turn(alg)

print(rdiff(c))

print(inversable(c.to_face()))

a = np.array(c.to_face())

c.turn("R")

ap = np.array(c.to_face())

ar = a.T @ np.linalg.inv(a @ a.T)

R = ar @ ap

print(a @ R)

As a result of finding a 20 sticker difference I no longer needed to permute the matrix.
However, the transition matrix remains meaningless.

4 Future Work

Perhaps transitions cannot be represented by matrices and have to be represented
by tensors or quaternions. Whatever the case, the mathematical representation must be
non commutative. This also may be a fairly useless avenue of research.

Various vectorization approaches and neural networks to be done soon!
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