Color Theory, Part 1: Color Difference Metrics

Stephen Huan
TJ Vision \& Graphics Club, January 27, 2021

Introduction

Basics: Physics \& Biology

- Light electromagnetic radiation
- Wavelength "color"
- Human eye contains cone cells
- (L)ong, (M)edium, (S)hort type - Roughly (R)ed, (G)reen, (B)lue
- Hence, "RGB" color space

But What About RYB?

- Red, Yellow, Blue taught in elementary school
- If human eye roughly RGB, why?
- Think of colors as vectors, "color system" = basis
- Effectiveness of system the size of span, "color gamut"
- Most effective therefore RGB!
- To form color, linear combination of $R(1,0,0)+G(0,1,0)+B(0,0,1)=(R, G, B)$
- Rough correspondence with cones
- But this is if we are emitting the light...
- e.g from a computer monitor
- "Additive" color system
- What about printing?

Subtractive Color System

- Paper has color, doesn't generate its own light
- Instead, reflects white light containing all colors
- Remove colors by absorbing
- Hence, use opposite color for basis
- Opposite in a discrete space: 0 -> 1, 1 -> $0 . \sim x=1-x$
- $\quad R=(255,0,0)->-R=(0,255,255)=$ "cyan"
- $-\mathbf{G}=(255,0,255)=$ "magenta"
- $-\boldsymbol{B}=(255,255,0)=$ "yellow"
- Thus, CMY system for "subtractive" color system \square

Basis of the Subtractive Color System

$$
\begin{aligned}
& \boldsymbol{W}=2^{*} 255^{*}(1,1,1) \\
& \boldsymbol{W}-\left[c_{1}(0,1,1)+c_{2}(1,0,1)+c_{3}(1,1,0)\right]=(R, G, B) \\
& \boldsymbol{W}-\left[c_{1} v_{1}+c_{2} v_{2}+c_{3} \boldsymbol{v}_{3}\right]=\boldsymbol{x} \\
& c_{1} \boldsymbol{v}_{1}+c_{2} v_{2}+c_{3} v_{3}=\boldsymbol{W}-\boldsymbol{x} \\
& {\left[\boldsymbol{v}_{1}\right.} \\
& v_{2} \\
& \left.\boldsymbol{c}=\boldsymbol{v}_{3}\right]\left[c_{1}\right. \\
& M_{2} \\
& c^{-1}(\boldsymbol{W}-\boldsymbol{x})
\end{aligned} c^{\top}=\boldsymbol{W}-\boldsymbol{x} .
$$

Implications

- Most color spaces 3D, R^{3}
- Hence, kd-tree viable in low dimensionality
- kd-tree naturally implies metric of "closeness"
- Can use k-means on color space
- Assign point to "closest" center
- Assign centers to "centroid"
- Are these well defined?
- How to measure "distance?"

Color Difference

Two Basic Approaches

1. Create a Uniform Color Space (UCS)

- Projection where Euclidean distance works well
- Distance, centroid, etc. naturally well-defined
- If Euclidean doesn't work, centroid doesn't work!
- More on uniform color spaces in the future....

2. Change distance metrics

1. Uniform Color Spaces

- International Commission on Illumination, (CIE) -

Commission internationale de l'éclairage

- Transform RGB (more commonly CIE's XYZ, space based off wavelengths) to some other space, use Euclidean in that space
- How to measure effectiveness?
- Need to ask humans to evaluate!

MacAdam ellipses

- If uniform, points (colors) equally far away from center color define circle
- Ask people to match color to target color until equal
- Found matches fall into ellipses
- Thus, XYZ not perceptually uniform!

CIELAB Color Space

- "Uniform" color space designed to fix XYZ
- $L^{*}=$ lightness, $0=$ black, $100=$ white
- $a^{*}=$ green-red, negative $=$ green, positive $=$ red
- $b^{*}=$ blue-yellow, negative $=$ blue, positive $=$ yellow
- RGB -> LAB?

1. RGB -> $X Y Z$
2. $X Y Z->L A B$

RGB -> XYZ

Standard-RGB $\rightarrow X Y Z$

$/ / \mathbf{s R}$, sG and sB (Standard RGB) input range $=0 \div 255$
$/ / \mathbf{x}, \mathbf{Y}$ and \mathbf{z} output refer to a $\mathrm{D} 65 / 2^{\circ}$ standard illuminant.
var_R $=(\mathbf{s R} / 255)$
var_G $=(\mathbf{s G} / 255)$
$\operatorname{var} \mathrm{B}=(\mathrm{sB} / 255)$

else $\quad \operatorname{var}_{-} R=\operatorname{var} R / 12.92$
if (var_G > 0.04045$)$ var_G $=\left(\left(\operatorname{var}_{-} G+0.055\right) / 1.055\right)^{\text {A }} 2.4$
else \quad var_G $=$ var_G / 12.92
if (var_B > 0.04045) var_B $=\left(\left(\operatorname{var}_{_} B+0.055\right) / 1.055\right)$ ^ 2.4
else
var_B $=\operatorname{var}_{\mathrm{Ba}} \mathrm{B} / 12.92$
$\operatorname{var}_{-} R=\operatorname{var}_{-} R * 100$

var_B $=$ var_B * 100
$\mathbf{x}=\operatorname{var} _\mathrm{R} * 0.4124+\operatorname{var}_{-} \mathrm{G} * 0.3576+\operatorname{var}_{\mathbf{R}} \mathrm{B} * 0.1805$
$\mathbf{Y}=\operatorname{var}_{\mathbf{R}} \mathrm{R} * 0.2126+\operatorname{var_ G} * 0.7152+\operatorname{var} \mathbf{B} * 0.0722$

XYZ -> LAB

$$
\begin{aligned}
L^{\star} & =116 f\left(\frac{Y}{Y_{\mathrm{n}}}\right)-16 \\
a^{\star} & =500\left(f\left(\frac{X}{X_{\mathrm{n}}}\right)-f\left(\frac{Y}{Y_{\mathrm{n}}}\right)\right) \\
b^{\star} & =200\left(f\left(\frac{Y}{Y_{\mathrm{n}}}\right)-f\left(\frac{Z}{Z_{\mathrm{n}}}\right)\right)
\end{aligned}
$$

where, being $t=Y / Y n$:

$$
\begin{aligned}
f(t) & = \begin{cases}\sqrt[3]{t} & \text { if } t>\delta^{3} \\
\frac{t}{3 \delta^{2}}+\frac{4}{29} & \text { otherwise }\end{cases} \\
\delta & =\frac{6}{29}
\end{aligned}
$$

CIELAB Problems

- RGB -> LAB, distance? Euclidean! (CIE76)

$$
\Delta E_{a b}^{*}=\sqrt{\left(L_{2}^{*}-L_{1}^{*}\right)^{2}+\left(a_{2}^{*}-a_{1}^{*}\right)^{2}+\left(b_{2}^{*}-b_{1}^{*}\right)^{2}}
$$

- Has noticeable failures for two cases:

1. Low lightness
2. Sucks at blue

2. Distance Metric

- Stick with CIELAB, "fix" it by changing distance metrics
- Might have better distance calculation, but loses space...

CIE94 $\Delta E_{94}^{*}=\sqrt{\left(\frac{\Delta L^{*}}{k_{L} S_{L}}\right)^{2}+\left(\frac{\Delta C_{a b}^{*}}{k_{C} S_{C}}\right)^{2}+\left(\frac{\Delta H_{a b}^{*}}{k_{H} S_{H}}\right)^{2}}$
where:

$$
\begin{aligned}
& \Delta L^{*}=L_{1}^{*}-L_{2}^{*} \\
& C_{1}^{*}=\sqrt{a_{1}^{* 2}+b_{1}^{* 2}} \\
& C_{2}^{*}=\sqrt{a_{2}^{* 2}+b_{2}^{* 2}} \\
& \Delta C_{a b}^{*}=C_{1}^{*}-C_{2}^{*} \\
& \Delta H_{a b}^{*}=\sqrt{\Delta E_{a b}^{* 2}-\Delta L^{* 2}-\Delta C_{a b}^{* 2}}=\sqrt{\Delta a^{* 2}+\Delta b^{* 2}-\Delta C_{a b}^{* 2}} \\
& \Delta a^{*}=a_{1}^{*}-a_{2}^{*} \\
& \Delta b^{*}=b_{1}^{*}-b_{2}^{*} \\
& S_{L}=1 \\
& S_{C}=1+K_{1} C_{1}^{*} \\
& S_{H}=1+K_{2} C_{1}^{*}
\end{aligned}
$$

$$
\Delta E_{00}^{*}=\sqrt{\left(\frac{\Delta L^{\prime}}{k_{L} S_{L}}\right)^{2}+\left(\frac{\Delta C^{\prime}}{k_{C} S_{C}}\right)^{2}+\left(\frac{\Delta H^{\prime}}{k_{H} S_{H}}\right)^{2}+R_{T} \frac{\Delta C^{\prime}}{k_{C} S_{C}} \frac{\Delta H^{\prime}}{k_{H} S_{H}}}
$$

CIEDE2000

Note: The formulae below should use degrees rather than radians; the issue is significant for R_{T}
The k_{L}, k_{C} and k_{H} are usually unity.
$\Delta L^{\prime}=L_{2}^{*}-L_{1}^{*}$
$\bar{L}^{\prime}=\frac{L_{1}^{*}+L_{2}^{*}}{2} \quad \bar{C}=\frac{C_{1}^{*}+C_{2}^{*}}{2}$
$a_{1}^{\prime}=a_{1}^{*}+\frac{a_{1}^{*}}{2}\left(1-\sqrt{\frac{\bar{C}^{7}}{\bar{C}^{7}+25^{7}}}\right) \quad a_{2}^{\prime}=a_{2}^{*}+\frac{a_{2}^{*}}{2}\left(1-\sqrt{\frac{\bar{C}^{7}}{\bar{C}^{7}+25^{7}}}\right)$
$\bar{C}^{\prime}=\frac{C_{1}^{\prime}+C_{2}^{\prime}}{2}$ and $\Delta C^{\prime}=C_{2}^{\prime}-C_{1}^{\prime} \quad$ where $C_{1}^{\prime}=\sqrt{a_{1}^{\prime 2}+b_{1}^{*^{2}}} \quad C_{2}^{\prime}=\sqrt{a_{2}^{\prime 2}+b_{2}^{*^{2}}}$
$h_{1}^{\prime}=\operatorname{atan} 2\left(b_{1}^{*}, a_{1}^{\prime}\right) \quad \bmod 360^{\circ}, \quad h_{2}^{\prime}=\operatorname{atan} 2\left(b_{2}^{*}, a_{2}^{\prime}\right) \bmod 360^{\circ}$
Note: The inverse tangent $\left(\tan ^{-1}\right)$ can be computed using a common library routine atan2 (b, a^{\prime}) which usually has a rang means that the corresponding C^{\prime} is zero); in that case, set the hue angle to zero. See Sharma 2005, eqn. 7.
$\Delta h^{\prime}= \begin{cases}h_{2}^{\prime}-h_{1}^{\prime} & \left|h_{1}^{\prime}-h_{2}^{\prime}\right| \leq 180^{\circ} \\ h_{2}^{\prime}-h_{1}^{\prime}+360^{\circ} & \left|h_{1}^{\prime}-h_{2}^{\prime}\right|>180^{\circ}, h_{2}^{\prime} \leq h_{1}^{\prime} \\ h_{2}^{\prime}-h_{1}^{\prime}-360^{\circ} & \left|h_{1}^{\prime}-h_{2}^{\prime}\right|>180^{\circ}, h_{2}^{\prime}>h_{1}^{\prime}\end{cases}$
Note: When either C_{1}^{\prime} or C_{2}^{\prime} is zero, then Δh^{\prime} is irrelevant and may be set to zero. See Sharma 2005, eqn. 10.
$\Delta H^{\prime}=2 \sqrt{C_{1}^{\prime} C_{2}^{\prime}} \sin \left(\Delta h^{\prime} / 2\right), \quad \bar{H}^{\prime}= \begin{cases}\left(h_{1}^{\prime}+h_{2}^{\prime}\right) / 2 & \left|h_{1}^{\prime}-h_{2}^{\prime}\right| \leq 180^{\circ} \\ \left(h_{1}^{\prime}+h_{2}^{\prime}+360^{\circ}\right) / 2 & \left|h_{1}^{\prime}-h_{2}^{\prime}\right|>180^{\circ}, h_{1}^{\prime}+h_{2}^{\prime}<360^{\circ} \\ \left(h_{1}^{\prime}+h_{2}^{\prime}-360^{\circ}\right) / 2 & \left|h_{1}^{\prime}-h_{2}^{\prime}\right|>180^{\circ}, h_{1}^{\prime}+h_{2}^{\prime} \geq 360^{\circ}\end{cases}$
Note: When either C_{1}^{\prime} or C_{2}^{\prime} is zero, then \bar{H}^{\prime} is $h_{1}^{\prime}+h_{2}^{\prime}$ (no divide by 2 ; essentially, if one angle is indeterminate, then use the c
in the computation of average hue".
$T=1-0.17 \cos \left(\bar{H}^{\prime}-30^{\circ}\right)+0.24 \cos \left(2 \bar{H}^{\prime}\right)+0.32 \cos \left(3 \bar{H}^{\prime}+6^{\circ}\right)-0.20 \cos \left(4 \bar{H}^{\prime}-63^{\circ}\right)$
$S_{L}=1+\frac{0.015\left(\bar{L}^{\prime}-50\right)^{2}}{\sqrt{20+\left(\bar{L}^{\prime}-50\right)^{2}}} \quad S_{C}=1+0.045 \bar{C}^{\prime} \quad S_{H}=1+0.015 \bar{C}^{\prime} T$
$R_{T}=-2 \sqrt{\frac{\bar{C}^{\prime 7}}{\bar{C}^{\prime 7}+25^{7}}} \sin \left[60^{\circ} \cdot \exp \left(-\left[\frac{\bar{H}^{\prime}-275^{\circ}}{25^{\circ}}\right]^{2}\right)\right]$

Summary

- Take your pick of color space, then try Euclidean
- CIELAB, CAM02-UCS, CAM16-UCS
- Or try an actual metric:
- CIE94, CIEDE2000
- Uncountable others
- Space has benefits over metric, e.g. centroid
- But metric is often easier to compute
- Can use gradient descent for "centroid" if metric differentiable
- Again, more on this later

What's the point?

ANSI Color Codes

- Image -> text
- catimq
- Some terminals support 3-byte "true color"
- Neither Vim's AnsiEsc nor Vim's Colorizer can render these
- Thus, have to use 255 color mode

a. original image

c. catimg 8-bit
b. catimg 24-bit "true color"

The Algorithm

- Downscale image somehow (averaging window, bicubic, bilinear, etc.)
- Convert color to nearest ANSI color
- Find closest color!
- catimg uses YUV color space + Euclidean which explains the poor quality
- Keep this problem in mind, it'll come back later...

Food for thought...

Sound familiar?

- Ad-hoc formulas
- Problem is by definition not a priori
- Empirically determined
- Deep learning?
- Datasets of color1, color2 pairs and corresponding distance
- Neural network essentially color space, project color -> vector
- Backpropagate on distance
- Uniform color space???
- Implication of NNs modeling brain's neural network...

Sources

- My implementation
- Color Vision - Wikipedia
- Why are red, yellow, and blue the primary colors in painting but computer screens use red, green, and blue?
- MacAdam ellipse
- USEFUL: Color math and programming code examples - EasyRGB
- scikit-image color functions
- CIELAB color space - Wikipedia

Sources

- Color difference - Wikipedia
- Color difference Delta E - A survey
- The development of the CIE 2000 colour-difference formula: CIEDE2000
- VERY USEFUL: http://www2.ece.rochester.edu/~gsharma/ciede2000/
- Organized presentation of formulas, detailed testcases, a bit of mathematical analysis
- Delta-E Calculator (broken for CIE2000, works for CIE76 and CIE94)
- ANSI escape code - Wikipedia

Appendix

Why 2*255 in "Basis of the Subtractive Color System"?

- Need coefficients to be nonnegative to make sense
- Because of LP, extrema occurs at simplex

```
from itertools import product
import numpy as np
w = np.array([1, 1, 1])
m = np.array([[0, 1, 1],
    [1, 0, 1],
    [1, 1, 0]])
minv = np.linalg.inv(m)
for corner in product((0, 255), repeat=3):
    u = minv@(2*255*w - np.array(corner))
    print(corner, u, min(u), max(u))
```

