Color Theory, Part 1: Color Difference Metrics

Stephen Huan TJ Vision & Graphics Club, January 27, 2021

Introduction

Basics: Physics & Biology

- Light electromagnetic radiation
- Wavelength "color"
- Human eye contains cone cells
- (L)ong, (M)edium, (S)hort type
 Roughly (R)ed, (G)reen, (B)lue
- Hence, "RGB" color space

But What About RYB?

- Red, Yellow, Blue taught in elementary school
- If human eye roughly RGB, why?
- Think of colors as vectors, "color system" = basis
 - Effectiveness of system the size of span, "color gamut"
- Most effective therefore RGB!
 - To form color, linear combination of R(1, 0, 0) + G(0, 1, 0) + B(0, 0, 1) = (R, G, B)
 - Rough correspondence with cones
- But this is if we are emitting the light...
 - e.g from a computer monitor
 - "Additive" color system
- What about printing?

Subtractive Color System

- Paper has color, doesn't generate its own light
- Instead, reflects white light containing all colors
- Remove colors by absorbing
- Hence, use *opposite* color for basis
 - Opposite in a discrete space: $0 \rightarrow 1, 1 \rightarrow 0$. x = 1 x
- **R** = (255, 0, 0) -> -**R** = (0, 255, 255) = "cyan"
- -G = (255, 0, 255) = "magenta"
- -**B** = (255, 255, 0) = "yellow"
- Thus, CMY system for "subtractive" color system

Basis of the Subtractive Color System

```
W = 2*255*(1, 1, 1)

W - [c_1 (0, 1, 1) + c_2 (1, 0, 1) + c_3 (1, 1, 0)] = (R, G, B)

W - [c_1 v_1 + c_2 v_2 + c_3 v_3] = x

c_1 v_1 + c_2 v_2 + c_3 v_3 = W - x

[v_1 v_2 v_3] [c_1 c_2 c_3]^{T} = W - x

c = M^{-1}(W - x)
```

• e.g. *W* - (319*C* + 191*M* + 64*Y*) = (255, 127, 0)

Implications

- Most color spaces 3D, R³
- Hence, kd-tree viable in low dimensionality
- kd-tree naturally implies metric of "closeness"
- Can use *k*-means on color space
 - Assign point to "closest" center
 - Assign centers to "centroid"
- Are these well defined?
- How to measure "distance?"

Color Difference

Two Basic Approaches

- 1. Create a Uniform Color Space (UCS)
 - Projection where Euclidean distance works well
 - Distance, centroid, etc. naturally well-defined
 - If Euclidean doesn't work, centroid doesn't work!
 - More on uniform color spaces in the future....
- 2. Change distance metrics

1. Uniform Color Spaces

- International Commission on Illumination, (CIE) -Commission internationale de l'éclairage
- Transform RGB (more commonly CIE's XYZ, space based off wavelengths) to some other space, use Euclidean in that space
- How to measure effectiveness?
- Need to ask humans to evaluate!

MacAdam ellipses

- If uniform, points (colors) equally far away from center color define circle
- Ask people to match color to target color until equal
- Found matches fall into ellipses
- Thus, XYZ not perceptually uniform!

CIELAB Color Space

- "Uniform" color space designed to fix XYZ
- L^* = lightness, 0 = black, 100 = white
- a^* = green-red, negative = green, positive = red
- b^* = blue-yellow, negative = blue, positive = yellow

- RGB -> LAB?
- 1. RGB -> XYZ
- 2. XYZ -> LAB

Standard-RGB \rightarrow XYZ

RGB -> XYZ

```
//sR, sG and sB (Standard RGB) input range = 0 + 255
//X, Y and Z output refer to a D65/2° standard illuminant.
var R = (sR / 255)
var G = (sG / 255)
var B = ( sB / 255 )
if ( var R > 0.04045 ) var R = ( ( var R + 0.055 ) / 1.055 ) ^ 2.4
else
                    var R = var R / 12.92
if ( var G > 0.04045 ) var G = ( ( var G + 0.055 ) / 1.055 ) ^ 2.4
else
                     var G = var G / 12.92
if ( var B > 0.04045 ) var B = ( ( var B + 0.055 ) / 1.055 ) ^ 2.4
else
                     var B = var B / 12.92
var R = var R * 100
var G = var G * 100
var B = var B * 100
X = var R * 0.4124 + var G * 0.3576 + var B * 0.1805
Y = var R * 0.2126 + var G * 0.7152 + var B * 0.0722
Z = var R * 0.0193 + var G * 0.1192 + var B * 0.9505
```

XYZ -> LAB

$$egin{array}{ll} L^{\star} &= 116 \; figg(rac{Y}{Y_{
m n}}igg) - 16 \ a^{\star} &= 500 \; igg(figg(rac{X}{X_{
m n}}igg) - figg(rac{Y}{Y_{
m n}}igg)igg) \ b^{\star} &= 200 \; igg(figg(rac{Y}{Y_{
m n}}igg) - figg(rac{Z}{Z_{
m n}}igg)igg) \end{array}$$

where, being *t=Y/Yn*:

$$f(t) = egin{cases} \sqrt[3]{t} & ext{if } t > \delta^3 \ rac{t}{3\delta^2} + rac{4}{29} & ext{otherwise} \ \delta = rac{6}{29} \end{cases}$$

CIELAB Problems

• RGB -> LAB, distance? Euclidean! (CIE76)

$$\Delta E^*_{ab} = \sqrt{(L^*_2 - L^*_1)^2 + (a^*_2 - a^*_1)^2 + (b^*_2 - b^*_1)^2}$$

- Has noticeable failures for two cases:
 - 1. Low lightness
 - 2. Sucks at blue

2. Distance Metric

- Stick with CIELAB, "fix" it by changing distance metrics
- Might have better distance calculation, but loses space...

$$\Delta E_{94}^{*} = \sqrt{\left(rac{\Delta L^{*}}{k_L S_L}
ight)^2 + \left(rac{\Delta C^{*}_{ab}}{k_C S_C}
ight)^2 + \left(rac{\Delta H^{*}_{ab}}{k_H S_H}
ight)^2}$$

CIE94

where:

$$\begin{split} \Delta L^* &= L_1^* - L_2^* \\ C_1^* &= \sqrt{a_1^{*\,2} + b_1^{*\,2}} \\ C_2^* &= \sqrt{a_2^{*\,2} + b_2^{*\,2}} \\ \Delta C_{ab}^* &= C_1^* - C_2^* \\ \Delta H_{ab}^* &= \sqrt{\Delta E_{ab}^{*\,2} - \Delta L^{*\,2} - \Delta C_{ab}^{*\,2}} = \sqrt{\Delta a^{*\,2} + \Delta b^{*\,2} - \Delta C_{ab}^{*\,2}} \\ \Delta a^* &= a_1^* - a_2^* \\ \Delta b^* &= b_1^* - b_2^* \\ S_L &= 1 \\ S_C &= 1 + K_1 C_1^* \\ S_H &= 1 + K_2 C_1^* \end{split}$$

$$\Delta E^*_{00} = \sqrt{\left(\frac{\Delta L'}{k_L S_L}\right)^2 + \left(\frac{\Delta C'}{k_C S_C}\right)^2 + \left(\frac{\Delta H'}{k_H S_H}\right)^2 + R_T \frac{\Delta C'}{k_C S_C} \frac{\Delta H'}{k_H S_H}}$$

Note: The formulae below should use degrees rather than radians; the issue is significant for R_T.

The k_L, k_C, and k_H are usually unity.

$$\begin{split} \Delta L' &= L_2^* - L_1^* \\ \bar{L}' &= \frac{L_1^* + L_2^*}{2} \quad \bar{C} = \frac{C_1^* + C_2^*}{2} \\ a_1' &= a_1^* + \frac{a_1^*}{2} \left(1 - \sqrt{\frac{\bar{C}^7}{\bar{C}^7 + 25^7}} \right) \quad a_2' = a_2^* + \frac{a_2^*}{2} \left(1 - \sqrt{\frac{\bar{C}^7}{\bar{C}^7 + 25^7}} \right) \\ \bar{C}' &= \frac{C_1' + C_2'}{2} \text{ and } \Delta C' = C_2' - C_1' \quad \text{where } C_1' = \sqrt{a_1'^2 + b_1^{*2}} \quad C_2' = \sqrt{a_2'^2 + b_2^{*2}} \\ h_1' &= \operatorname{atan2}(b_1^*, a_1') \quad \operatorname{mod} \ 360^\circ, \quad h_2' = \operatorname{atan2}(b_2^*, a_2') \quad \operatorname{mod} \ 360^\circ \end{split}$$

Note: The inverse tangent (tan⁻¹) can be computed using a common library routine atan2(b, a') which usually has a rang means that the corresponding C' is zero); in that case, set the hue angle to zero. See Sharma 2005, eqn. 7.

$$\Delta h' = egin{cases} h_2' - h_1' & |h_1' - h_2'| \leq 180^\circ \ h_2' - h_1' + 360^\circ & |h_1' - h_2'| > 180^\circ, h_2' \leq h_1' \ h_2' - h_1' - 360^\circ & |h_1' - h_2'| > 180^\circ, h_2' > h_1' \end{cases}$$

Note: When either C'_1 or C'_2 is zero, then $\Delta h'$ is irrelevant and may be set to zero. See Sharma 2005, eqn. 10.

$$\Delta H' = 2 \sqrt{C_1' C_2'} \sin(\Delta h'/2), \quad ar{H}' = egin{cases} (h_1' + h_2')/2 & |h_1' - h_2'| \leq 180^\circ \ (h_1' + h_2' + 360^\circ)/2 & |h_1' - h_2'| > 180^\circ, h_1' + h_2' < 360^\circ \ (h_1' + h_2' - 360^\circ)/2 & |h_1' - h_2'| > 180^\circ, h_1' + h_2' \geq 360^\circ \end{cases}$$

Note: When either C'_1 or C'_2 is zero, then \overline{H}' is $h'_1 + h'_2$ (no divide by 2; essentially, if one angle is indeterminate, then use the c in the computation of average hue".

$$\begin{split} T &= 1 - 0.17 \cos(\bar{H}' - 30^{\circ}) + 0.24 \cos(2\bar{H}') + 0.32 \cos(3\bar{H}' + 6^{\circ}) - 0.20 \cos(4\bar{H}' - 63^{\circ}) \\ S_L &= 1 + \frac{0.015 \left(\bar{L}' - 50\right)^2}{\sqrt{20 + \left(\bar{L}' - 50\right)^2}} \quad S_C = 1 + 0.045 \bar{C}' \quad S_H = 1 + 0.015 \bar{C}' T \\ R_T &= -2 \sqrt{\frac{\bar{C}'^7}{\bar{C}'^7 + 25^7}} \sin\left[60^{\circ} \cdot \exp\left(- \left[\frac{\bar{H}' - 275^{\circ}}{25^{\circ}} \right]^2 \right) \right] \end{split}$$

CIEDE2000

Summary

- Take your pick of color space, then try Euclidean • CIELAB, CAM02-UCS, CAM16-UCS
- Or try an actual metric:
 - CIE94, CIEDE2000
- Uncountable others
- Space has benefits over metric, e.g. centroid
 - But metric is often easier to compute
 - Can use gradient descent for "centroid" if metric differentiable
 - Again, more on this later

What's the point?

ANSI Color Codes

- Image -> text
- <u>catimq</u>
- Some terminals support 3-byte "true color"
- Neither Vim's <u>AnsiEsc</u> nor Vim's <u>Colorizer</u> can render these

a. original image

b. catimg 24-bit "true color"

C. catimg 8-bit

• Thus, have to use 255 color mode

The Algorithm

	256-color mode — foreground: ESC[38;5;#m background: ESC[48;5;#m																[hide]																		
Standard colors															1	High-inter	Jh-intensity colors																		
	0	1			2		3			4		5		6		7			8		9		10		11		12		13		14			15	
	216 colors																																		
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51
52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87
88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123
124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176		178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195
196	197	198	199	200	201	202	203	204		206								214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231
																	Grayso	ale color	s																
233	232 233		234	234 2		23	6 237		23	238		239 240		241		42 243		24	244 245		246		247 24		249		250	250 251		252		253 2		254 255	

- Downscale image somehow (averaging window, bicubic, bilinear, etc.)
- Convert color to nearest ANSI color
 - Find closest color!
 - catimg uses YUV color space + Euclidean which explains the poor quality
- Keep this problem in mind, it'll come back later...

Food for thought...

Sound familiar?

- Ad-hoc formulas
- Problem is by definition not a priori
- Empirically determined
- Deep learning?

- Datasets of color1, color2 pairs and corresponding distance
- Neural network essentially color space, project color -> vector
- Backpropagate on distance
- Uniform color space???
- Implication of NNs modeling brain's neural network...

Sources

- My implementation
- <u>Color Vision Wikipedia</u>
- Why are red, yellow, and blue the primary colors in painting but computer screens use red, green, and blue?
- <u>MacAdam ellipse</u>
- USEFUL: <u>Color math and programming code examples EasyRGB</u>
 - scikit-image color functions
- <u>CIELAB color space Wikipedia</u>

Sources

- <u>Color difference Wikipedia</u>
- <u>Color difference Delta E A survey</u>
- The development of the CIE 2000 colour-difference formula: CIEDE2000
- VERY USEFUL: <u>http://www2.ece.rochester.edu/~gsharma/ciede2000/</u>
 - Organized presentation of formulas, detailed testcases, a bit of mathematical analysis
- Delta-E Calculator (broken for CIE2000, works for CIE76 and CIE94)
- ANSI escape code Wikipedia

Appendix

Why 2*255 in "Basis of the Subtractive Color System"?

- Need coefficients to be nonnegative to make sense
- Because of LP, extrema occurs at simplex

```
from itertools import product
import numpy as np
w = np.array([1, 1, 1])
m = np.array([[0, 1, 1]],
              [1, 0, 1],
              [1, 1, 0]])
minv = np.linalq.inv(m)
for corner in product((0, 255), repeat=3):
    u = minv@(2*255*w - np.array(corner))
    print(corner, u, min(u), max(u))
```