
Color Theory, Part 1:
Color Difference Metrics

Stephen Huan
TJ Vision & Graphics Club, January 27, 2021

Introduction

Basics: Physics & Biology

● Light electromagnetic radiation
● Wavelength “color”
● Human eye contains cone cells
● (L)ong, (M)edium, (S)hort type

○ Roughly (R)ed, (G)reen, (B)lue
● Hence, “RGB” color space

But What About RYB?

● Red, Yellow, Blue taught in elementary school
● If human eye roughly RGB, why?
● Think of colors as vectors, “color system” = basis

○ Effectiveness of system the size of span, “color gamut”
● Most effective therefore RGB!

○ To form color, linear combination of R (1, 0, 0) + G (0, 1, 0) + B (0, 0, 1) = (R, G, B)
○ Rough correspondence with cones

● But this is if we are emitting the light…
○ e.g from a computer monitor
○ “Additive” color system

● What about printing?

Subtractive Color System

● Paper has color, doesn’t generate its own light
● Instead, reflects white light containing all colors
● Remove colors by absorbing
● Hence, use opposite color for basis

○ Opposite in a discrete space: 0 -> 1, 1 -> 0. ~x = 1 - x
● R = (255, 0, 0) -> -R = (0, 255, 255) = “cyan”
● -G = (255, 0, 255) = “magenta”
● -B = (255, 255, 0) = “yellow”
● Thus, CMY system for “subtractive” color system

Basis of the Subtractive Color System

W = 2*255*(1, 1, 1)

W - [c1 (0, 1, 1) + c2 (1, 0, 1) + c3 (1, 1, 0)] = (R, G, B)

W - [c1 v1 + c2 v2 + c3 v3] = x

c1 v1 + c2 v2 + c3 v3 = W - x

[v1 v2 v3] [c1 c2 c3]
T = W - x

c = M -1(W - x)

● e.g. W - (319C + 191M + 64Y) = (255, 127, 0)

Implications

● Most color spaces 3D, R3

● Hence, kd-tree viable in low dimensionality
● kd-tree naturally implies metric of “closeness”
● Can use k-means on color space

○ Assign point to “closest” center
○ Assign centers to “centroid”

● Are these well defined?
● How to measure “distance?”

Color Difference

Two Basic Approaches

1. Create a Uniform Color Space (UCS)
○ Projection where Euclidean distance works well
○ Distance, centroid, etc. naturally well-defined
○ If Euclidean doesn’t work, centroid doesn’t work!

■ More on uniform color spaces in the future....
2. Change distance metrics

1. Uniform Color Spaces

● International Commission on Illumination, (CIE) -
Commission internationale de l'éclairage

● Transform RGB (more commonly CIE’s XYZ, space based off wavelengths) to
some other space, use Euclidean in that space

● How to measure effectiveness?
● Need to ask humans to evaluate!

MacAdam ellipses

● If uniform, points (colors) equally far
away from center color define circle

● Ask people to match color to target
color until equal

● Found matches fall into ellipses
● Thus, XYZ not perceptually uniform!

CIELAB Color Space

● “Uniform” color space designed to fix XYZ
● L* = lightness, 0 = black, 100 = white
● a* = green-red, negative = green, positive = red
● b* = blue-yellow, negative = blue, positive = yellow

● RGB -> LAB?
1. RGB -> XYZ
2. XYZ -> LAB

RGB -> XYZ

XYZ -> LAB

CIELAB Problems

● RGB -> LAB, distance? Euclidean! (CIE76)

● Has noticeable failures for two cases:
1. Low lightness
2. Sucks at blue

2. Distance Metric

● Stick with CIELAB, “fix” it by changing distance metrics
● Might have better distance calculation, but loses space...

CIE94

CIEDE2000

Summary

● Take your pick of color space, then try Euclidean
○ CIELAB, CAM02-UCS, CAM16-UCS

● Or try an actual metric:
○ CIE94, CIEDE2000

● Uncountable others
● Space has benefits over metric, e.g. centroid

○ But metric is often easier to compute
○ Can use gradient descent for “centroid” if metric differentiable
○ Again, more on this later

What’s the point?

ANSI Color Codes

● Image -> text
● catimg

● Some terminals
support 3-byte
“true color”

● Neither Vim’s
AnsiEsc nor Vim’s
Colorizer can
render these

● Thus, have to use
255 color mode

a. original image b. catimg 24-bit “true color” c. catimg 8-bit

https://github.com/posva/catimg
https://github.com/powerman/vim-plugin-AnsiEsc
https://github.com/chrisbra/Colorizer

The Algorithm

● Downscale image somehow (averaging window, bicubic, bilinear, etc.)
● Convert color to nearest ANSI color

○ Find closest color!
○ catimg uses YUV color space + Euclidean which explains the poor quality

● Keep this problem in mind, it’ll come back later...

Food for thought...

Sound familiar?

● Ad-hoc formulas
● Problem is by definition not a priori
● Empirically determined
● Deep learning?

● Datasets of color1, color2 pairs and corresponding distance
● Neural network essentially color space, project color -> vector
● Backpropagate on distance
● Uniform color space???
● Implication of NNs modeling brain’s neural network...

Sources
● My implementation
● Color Vision - Wikipedia
● Why are red, yellow, and blue the primary colors in painting but computer

screens use red, green, and blue?
● MacAdam ellipse
● USEFUL: Color math and programming code examples - EasyRGB

○ scikit-image color functions
● CIELAB color space - Wikipedia

https://github.com/stephen-huan/cs-lectures/tree/master/computer-vision/color-theory
https://en.wikipedia.org/wiki/Color_vision
https://wtamu.edu/~cbaird/sq/2015/01/22/why-are-red-yellow-and-blue-the-primary-colors-in-painting-but-computer-screens-use-red-green-and-blue/
https://wtamu.edu/~cbaird/sq/2015/01/22/why-are-red-yellow-and-blue-the-primary-colors-in-painting-but-computer-screens-use-red-green-and-blue/
https://en.wikipedia.org/wiki/MacAdam_ellipse
http://www.easyrgb.com/en/math.php
https://scikit-image.org/docs/dev/api/skimage.color.html#rgb2lab
https://en.wikipedia.org/wiki/CIELAB_color_space

Sources

● Color difference - Wikipedia
● Color difference Delta E - A survey
● The development of the CIE 2000 colour‐difference formula: CIEDE2000
● VERY USEFUL: http://www2.ece.rochester.edu/~gsharma/ciede2000/

○ Organized presentation of formulas, detailed testcases, a bit of mathematical analysis
● Delta-E Calculator (broken for CIE2000, works for CIE76 and CIE94)
● ANSI escape code - Wikipedia

https://en.wikipedia.org/wiki/Color_difference
https://www.researchgate.net/publication/236023905_Color_difference_Delta_E_-_A_survey
https://www.researchgate.net/publication/229511830_The_development_of_the_CIE_2000_colour-difference_formula_CIEDE2000
http://www2.ece.rochester.edu/~gsharma/ciede2000/
http://colormine.org/delta-e-calculator
https://en.wikipedia.org/wiki/ANSI_escape_code

Appendix

Why 2*255 in “Basis of the Subtractive Color System”?

● Need coefficients to be nonnegative to make sense
● Because of LP, extrema occurs at simplex

from itertools import product

import numpy as np

w = np.array([1, 1, 1])

m = np.array([[0, 1, 1],

 [1, 0, 1],

 [1, 1, 0]])

minv = np.linalg.inv(m)

for corner in product((0, 255), repeat=3):

 u = minv@(2*255*w - np.array(corner))

 print(corner, u, min(u), max(u))

