
Color Theory, Part 2:
Uniform Color Spaces

Stephen Huan
TJ Vision & Graphics Club, February 3, 2021

k-means

k-means

Derivation of k-means: Point Assignment

Derivation of k-means: Center Location

Derivation of k-means: Center Location

Derivation of k-means: Center Location

Implications

● Point to center assignment relies on minimum distance
● Centroid relies on Euclidean distance

○ Minimize norm of y - x
● Suppose we switch distance metrics
● Point assignment computation trivial
● Centroid computation nontrivial

○ Need to differentiate, unlikely to get clean analytical solution
○ Use numerical methods e.g. gradient descent
○ Some metrics are very complicated/non-continuous or non-differentiable

● Hence, easier to switch spaces

Uniform Color Spaces

● Projection from RGB
● Use Euclidean distance for distance
● Should “just work”
● Goal is perceptual uniformity i.e. MacAdam ellipses

Uniform Color Spaces

sRGB vs RGB

● RGB: “linear”, e.g. adding intensities for greyscale
○ Corresponds to voltage

● sRGB: nonlinear, based off actual monitor
○ Corresponds to brightness, L = V 𝛾

○ So we take V -> V 1/𝛾

● 8-bit = only 256 colors
○ Prioritize black for perceptual uniformity

Y’UV

● Y’: brightness, U/V: color
● Matrix multiplication from RGB
● Which RGB?
●
● Wait, but

● In particular, catimg, scikit-image, and tensorflow do not gamma correct
● No one really knows

scikit-image tensorflow

Color Appearance Models

● CIECAM02/CAM16 are color appearance models
● That is, given XYZ (wavelengths) predict how color appears
● CAM16 output: Correlates of lightness J, chroma C, hue composition H, hue

angle h, colorfulness M, saturation s, and brightness Q
● We want color space
● Luckily, uniform color space (UCS) variants
● J lightness, a red/green, b blue/yellow

○ CIELAB basically

Implementing the CAMs

● CIECAM02 and CAM16 have the same “body”, just a different initial
“color appearance transformation” (CAT)

● Thus, most efficient to subclass CAM
○ Only difference is M and M -1

● CAMXY inherits methods from base CAM

CAM Forward Implementation

CAM Inverse Implementation

Uniform Color Space

Qualitative Performance

Qualitative Performance

Miscellaneous

One Weird Trick Color Scientists DON’T Want You to Know:
Lower Your STRESS By 17%!

● Steven’s power law: S = a Ib
○ S: subjective magnitude, I: physical stimulus

● ΔE’ = a ΔEb

● Kind of but not really
● STRESS: measure of color difference performance, lower is better
● Lowers STRESS by an average of 17%
● Why does this work?

○ b < 1: compresses the space (small values -> larger, larger values -> smaller)
○ Raters have difficulty with small values
○ Also large values asymptote

Color Conversion Tree

ANSI RGB XYZ

CAM16

CAM02

CIELAB

CAM16
UCS

CAM02
UCS

YUV

sRGB

Color Conversion API

● Could hand-design
○ 10 choose 2 = 45

● Could have “central” color, e.g. XYZ
○ CAM16 -> CAM16UCS
○ CAM16 -> XYZ -> CAM16 -> CAM16UCS

● BFS from one space to the other
○ Minimize # of functions -> faster, less numerical error

Color Difference

● Distance parameterized by (space, metric)
● e.g. (RGB, Euclidean) or (CIELAB, CIEDE2000)
● 8 spaces + 3 metrics = 11 possible!
● Power function for 6 -> 17 possible
● Can technically apply custom metrics on non-CIELAB

○ Surprisingly, this kinda… works?

Experimental Results

ANSI Color Codes

● Image -> text
● catimg

● Some terminals
support 3-byte
“true color”

● Neither Vim’s
AnsiEsc nor Vim’s
Colorizer can
render these

● Thus, have to use
255 color mode

a. original image b. catimg 24-bit “true color” c. catimg 8-bit

https://github.com/posva/catimg
https://github.com/powerman/vim-plugin-AnsiEsc
https://github.com/chrisbra/Colorizer

The Algorithm

● Downscale image somehow (averaging window, bicubic, bilinear, etc.)
● Convert color to nearest ANSI color

○ Find closest color!
○ catimg uses YUV color space + Euclidean which explains the poor quality

Downscaling

● Use ffmpeg
● Good

○ Area (used by catimg)
○ Experimental

● Okay
○ Bilinear
○ Gauss

● Bad
○ Bicubic
○ Neighbor
○ Bicublin
○ Sinc
○ Lanczos
○ Spline

https://github.com/posva/catimg/blob/master/src/sh_image.c

Downscaling

● full_chroma_int and full_chroma_inp don’t seem to do anything
● Could use uniform color space for the averaging
● Makes very little difference

Dataset

● Album cover of Nisemonogatari Gekihanongakushu (Original Soundtrack)
○ Album covers are nice and square, low resolution (544x544)

● Colors reveal failure points

https://i.scdn.co/image/ab67616d0000b27373f9aa7d9a4e5ef0f73c1f81
https://open.spotify.com/album/6KcPqBUDv4lHUt0idVQEgC

Getting Started

original catimg YUV

not sure why catimg doesn’t render white…?

Basics

ansi256 RGB XYZ

“Perceptually Uniform” Spaces

CIELAB CIECAM02-UCS CAM16-UCS

Distance Metrics

CIE94 CIE2000 CMC

k-means

Choosing k

● If k too big, differences minor -> color space doesn’t matter
● If k too small, not much able to do -> also doesn’t matter
● Need k to be just right
● In this case, k = 32
● Anime images are too easy, real life is better

○ 131,707 distinct pixels versus 28,641: 4.6x difference

Dataset #2

● Album cover of Opportunity by Kana Hanazawa

https://i.scdn.co/image/ab67616d0000b273bc227fa65c3477fa500abde0
https://open.spotify.com/album/49z4EHne8qdix2mSfZNMPm

Basics

RGB YUV XYZ

Perceptually Uniform Spaces

CIELAB CIECAM02-UCS CAM16-UCS

CIECAM02 original XYZ

Final score: 205,064 to 90,872 (CIEDE2000)

Conclusion

● Color perception != image quality
● Problems like this are really difficult
● Machine learning?

Sources

● My implementation(s)
● Previous lecture: Color Theory, Part 1: Color Difference Metrics

○ Check the sources in that presentation, not going to repeat!
● sRGB - Wikipedia
● Linear, Gamma and sRGB Color Spaces
● What's wrong with 8-bit linear RGB?
● YUV - Wikipedia
● catimg YUV implementation

○ scikit-image, tensorflow (tf.image)
● Delta E (CMC)
● Scaling - FFmpeg

https://github.com/stephen-huan/cs-lectures/tree/master/computer-vision/color-theory
https://docs.google.com/presentation/d/1XlxeFMDeSFhnE3O-h7EvX-LEPMq4O18Dc1llNjYITZI/edit?usp=sharing
https://en.wikipedia.org/wiki/SRGB
https://matt77hias.github.io/blog/2018/07/01/linear-gamma-and-sRGB-color-spaces.html
http://tulrich.com/webgl/rgb/linear_vs_srgb.html
https://en.wikipedia.org/wiki/YUV
https://github.com/posva/catimg/blob/master/src/sh_color.c
https://scikit-image.org/docs/dev/api/skimage.color.html#skimage.color.rgb2yuv
https://www.tensorflow.org/api_docs/python/tf/image/yuv_to_rgb
http://www.brucelindbloom.com/index.html?Eqn_DeltaE_CMC.html
https://trac.ffmpeg.org/wiki/Scaling

Sources

● Power functions improving the performance of color-difference formulas
● The CIECAM02 color appearance model
● Uniform Colour Spaces Based on CIECAM02 Colour Appearance Model
● Comprehensive color solutions: CAM16, CAT16, and CAM16-UCS
● Algorithmic improvements for the CIECAM02 and CAM16 color appearance

models

https://doi.org/10.1364/OE.23.000597
https://www.researchgate.net/publication/221501922_The_CIECAM02_color_appearance_model
https://doi.org/10.1002/col.20227
https://doi.org/10.1002/col.22131
https://arxiv.org/abs/1802.06067
https://arxiv.org/abs/1802.06067

