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1 Introduction

The Fast Fourier Transform (FFT) is a common technique for signal processing and has
many engineering applications. It also has a fairly deep mathematical basis, but we will
ignore both those angles in favor of accessibility. Instead, we will approach the FFT from
the most intuitive angle, polynomial multiplication . First, we represent polynomials
by a list of coefficients, where the number at index 0 represents the coefficient of x0,
the number at index 1 represents the coefficient of x1, and so on. For example, the
polynomial 3 + 2x+ 4x2 becomes [3, 2, 4].

The multiplication of two polynomials f and g is then simply each term of f multiplied
with each term of g and then added up. We can also assume that f and g are the same
length N , where the polynomial of lesser degree is padded with zeros. If we say the
product is p, we can give an formula for an index in p in the following way:

p[n] = (f ∗ g)[n] =
n∑
i=0

f [i]g[n− i]

p[n] is the coefficient of xn in the product, and it is formed by adding up all the possible
ways to get to xn, i.e. f [0]x0 times g[n]xn, f [1]x1 times g[n − 1]xn−1, etc. Intuitively,
this “flips” g, and then the resulting product is computed by “sliding” g over f and then
computing the dot product between the two lists, or a weighted average.

Sticking with the example from before, we have the polynomial [3, 2, 4] and the
polynomial 1 + 3x + 2x2 = [1, 3, 2]. To compute their product, we first flip the second
list to get [2, 3, 1]. We then slide [2, 3, 1] over [3, 2, 4], imagining there are zeros
such that the parts of [2, 3, 1] that don’t overlap with [3, 2, 4] aren’t counted. For the
first value, 1 overlaps with 3 so we get 3. Then, [3, 1] overlaps with [3, 2] so we get
3 · 3 + 1 · 2 = 11. [2, 3, 1] overlaps with [3, 2, 4] = 16, [2, 3] overlaps [2, 4] = 16,
and finally [2] overlaps with [4] to give 8. Our final answer is then [3, 11, 16, 16, 8] =
3 + 11x+ 16x2 + 16x3 + 8x4 = (3 + 2x+ 4x2)(1 + 3x+ 2x2).

What if we computed g ∗ f? It should be the same since polynomial multiplication
should be commutative, but we can prove it.
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Theorem 1.1. f ∗ g = g ∗ f , i.e. polynomial multiplication is commutative.

Proof. We have (f ∗ g)(n) =
∑n

i=0 f [i]g[n− i] by definition. Perform the variable substi-
tution k = n − i, so i = n − k. Summing from

∑n
i=0 will sum from k = n to k = 0 in

descending order, so
∑n

i=0 =
∑n

k=0 (from the commutativity of addition).

(f ∗ g)[n] =
n∑
i=0

f [i]g[n− i] Definition

=

n∑
k=0

f [n− k]g[k] Substitution

= (g ∗ f)

�

This operation is known as a convolution , which is equivalent to polynomial mul-
tiplication in the discrete case and is denoted f ∗ g. Its relevance to image processing
will be expounded on later (for now, this puts the “convolutional” in “Convolutional Neu-
ral Networks”). Today’s lecture is about the Fast Fourier Transform , an efficient
algorithm to perform convolutions.

2 Algorithms

A naive approach to the convolution of two lists of lengthN,M will have runtime O(NM)
using the standard polynomial multiplication algorithm (each term of the first list mul-
tiplied with each term of the second list). However, the length of the convolution will be
N +M − 1. The first list is a polynomial of degree N − 1, the second of degree M − 1,
so the resulting polynomial has degree (N − 1) + (M − 1) = N +M − 2. A polynomial
of degree D has D+1 coefficients, so the length of the product is N +M − 1. Thus, the
lower bound for a convolution is linear, so a better runtime than quadratic could exist.

2.1 FFT

2.1.1 Point-Value Representation

The key observation is that we can represent polynomials in a different form than a
coefficient list. In particular, we can use a point-value representation, or a list of
(x, y) pairs that give an input and the corresponding output of a polynomial. We call
the process of going from a coefficient representation to a point-value representation
evaluation , since we evaluate the polynomial at multiple points to get the point-value
representation. Likewise, we call the process of going from a point-value representation
to a coefficient representation interpolation , since we are finding a polynomial which
“fits” the data. Suppose we have a polynomial of degree n. We then need a certain
number of points for evaluation and interpolation to be well-defined. Evaluation is always
well-defined, because we can always evaluate a polynomial of any degree or coefficient
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representation. However, if we don’t have enough points, interpolation is not necessarily
possible. For example, consider the point-value representation [(0, 0), (1, 1)] and a degree
of 2. This could be the polynomial x2 or 2x2 − x. So for a polynomial of degree n,
we need at least n + 1 distinct points (since each point gives another linear equation
constraining the n + 1 coefficients of the polynomial). We can in fact prove that if we
have n+ 1 points, that uniquely determines a polynomial of degree n.

Theorem 2.1. A point-value representation with n distinct points uniquely determines
a polynomial of degree n− 1.

Proof. We have a polynomial of the form p(x) = a0+ a1x+ a2x
2+ · · ·+ an−1xn−1 and n

points of the form (xi, yi) such that p(xi) = yi. Those constraints determine the following
matrix equation: 

1 x0 x20 · · · xn−10

1 x1 x21 · · · xn−11
...

...
...

. . .
...

1 xn−1 x2n−1 · · · xn−1n−1



a0
a1
...

an−1

 =


y0
y1
...

yn−1


The leftmost matrix is known as the Vandermonde matrix, denoted V (x0, x1, . . . , xn−1)
which has the determinant (left as an exercise for the reader)∏

0≤j<i≤n−1
(xi − xj)

A matrix is invertible if and only if its determinant is nonzero, so this matrix is invertible
if each xi is distinct. Thus, we can solve for the coefficients by multiplying by the
inverse, so ~a = V −1~y, and this solution is unique since an invertible matrix is a bijective
transformation between a vector space and itself. �

This proof directly gave an easy construction of the interpolating polynomial, by
V −1~y. Matrix inverses can be computed in O(n3) as an easy upper bound, but that can
be improved with Lagrange’s interpolating formula to yield a O(n2) time algorithm. I
will not elaborate on Lagrange’s formula in this lecture but a good Wikipedia page is
available here.

If we have a list of N coefficients, then the polynomial is of degree N − 1 and thus
we need N distinct points. We first figure out how to evaluate polynomial at a single
point, and will repeat the process for all the points. Suppose we have a polynomial of
the form p(x) = a0 + a1x + a2x

2 + · · · + an−1x
n−1. If we evaluate at a particular x0,

we compute each aix0i term which would take O(N2) time with repeated multiplication
and O(N logN) time with fast exponentiation. But we can do better with Horner’s
rule. We notice that the degree in coefficient form is monotonically increasing, so we can
successively factor out a multiplication by x.

p(x) = a0 + x(a1 + x(a2 + · · ·+ x(an−2 + xan−1)))
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We do N multiplications and N additions, so the algorithm runs in O(N). Evaluating a
polynomial at N points then takes O(N ·N) = O(N2) time.

So we can do both evaluation and interpolation in O(n2) and both are well-defined if
we have enough points. Why did we figure this out? We can multiply two polynomials ef-
ficiently if we have the point-value representations of each! Suppose we have polynomials
f, g in coefficient form. We also assume that the polynomials are evaluated at the same
points, so we have [(x0, f(x0)), (x1, f(x1)), . . . ] and [(x0, g(x0)), (x1, g(x1)), . . . ]. f ∗ g is
then simply [(x0, f(x0)g(x0)), (x1, f(x1)g(x1)), . . . ], or the element-wise multiplication of
the two lists. This can be easily computed in O(n)!

So our algorithm for polynomial multiplication is as follows:

1. Evaluate a coefficient representation into a point-value representation.

2. Multiply the two point-value representations in linear time.

3. Interpolate the resulting point-value representation back to coefficients.

The speed of this algorithm is contingent on our ability to quickly evaluate and
interpolate a polynomial. Currently, with our O(n2) time evaluation and interpolation
algorithms we match the O(n2) naive algorithm. However, under this framework we can
improve the time if we pick our points cleverly rather than arbitrarily.

2.1.2 Complex Roots of Unity

Our special points are going to be complex roots of unity , or roots of 1 that are
allowed to have an imaginary component. For example, the second root of 1 can be 1
or −1 (taking “second root” to mean anything which squared is 1). The fourth root of 1
can be 1, −1, i, or −i. (since i4 = (i2)2 = (−1)2 = 1).

To easily compute these roots, we can rewrite 1 using Euler’s formula eix = cosx +
i sinx (a proof of this appears in the appendix). e2πi = cos 2π + i sin 2π = 1. So we can
take a nth root by simply raising (e2πi)

1
n , so a root is e

2πi
n .

However, note that we can rewrite 1 in many different ways since sine and cosine are
periodic. Since adding 2π doesn’t change the value of sine and cosine, 1 is also equal to
e4πi, e6πi, and so on. In general, e2πki is equal to 1 for any integer k, so if we take the
nth root, e

2πki
n is also a valid root of unity. However, not every k gives a distinct root of

unity. k = n + 1 is equivalent to k = 1 since cos
(
2π(n+1)

n

)
= cos

(
2π + 2π

n

)
= cos

(
2π
n

)
.

This generalizes such that an power k equivalent to j mod n will have the same root.
We can easily keep track of the n distinct nth roots of unity by writing them as

powers of the principle root of unity , or the root of unity when k = 1. We will denote
this principle root as ωn, where ωn = e

2πi
n , the first of unity we calculated above. Since

we picked k = 1, we can represent every nth root of unity as a power of this root of unity
since e

2πki
n = (e

2πi
n )k = ωkn. Also, every power of the principle root of unity is itself a nth

root of unity, because (ωkn)
n = (ωnn)

k = 1k = 1.
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We now come to an observation that will be instrumental in developing the FFT -
that the square of a nth principle root of unity is a n

2 th principle root of unity. This

follows nearly from definition: ω2
n = (e

2πi
n )2 = e

4πi
n = e

2πi
n/2 = ωn

2
.

We now show that evaluating a polynomial at n distinct nth roots of unity can be
written as a recurrence relation. Our observation is a clever rewrite of a polynomial into
two parts. Suppose we have the polynomial p(x) = a0+a1x+a2x

2+ · · ·+an−1xn−1. We
divide the coefficient list of p into two parts, one with even powers and the other with
odd powers, the left and right halves respectively. We assume that n is a power of 2 so
that p can always be divided in such a manner (if n isn’t, we can always pad with 0’s).

p(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 (1)

L(x) = a0 + a2x+ a4x
2 + . . . (2)

R(x) = a1 + a3x+ a5x
2 + . . . (3)

It follows that p can be written in terms of L and R:
p(x) = L(x2) + xR(x2) (4)

Recall that we are trying to evaluate p at n roots of unity. Suppose we have a function
that takes as input a list of coefficients and returns the evaluation at n roots of unity. We
can define this function in terms of itself, because we have a recurrence relation - divide
the list in two, giving us L evaluated at n

2 th roots of unity and the same for R (from the
fact that a nth root of unity squared is a n

2 th root of unity). Finally, we can reconstruct

p from L and R according to (4). This works directly for ω0
n to ω

n
2
−1

n , however for a
power greater than n

2 − 1 we need to put it in terms of a power less than n
2 (since L and

R are only n
2 long). Luckily,

ω
k+n

2
n = cos

(
2π
k + n

2

n

)
+ i sin

(
2π
k + n

2

n

)
= cos

(
2πk

n
+ π

)
+ i sin

(
2πk

n
+ π

)
= −ωkn

So, for some power k of the base root of unity we can compute

p(ωkn) = L(ω2k
n ) + ωknR(ω

2k
n )

and, using the negative property derived above,

p(ω
k+n

2
n ) = L(ω2k

n )− ωknR(ω2k
n )

We compute L and R recursively, and we’re done! The base case is also trivial - at
any point, say, for n = 1, we can stop dividing the list in half and then just evaluate the
polynomial at a single point. The 1st principle root of unity is just 1, and evaluating
a polynomial at x = 1 is the sum of its coefficients, which for a polynomial with one
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coefficient is just the single coefficient. Thus, we can just return the input to the function.
The running time of this algorithm will be O(n log n), since at every level of the recursion
we divide the list in half, making the depth of the recursive tree log n, and at every level
of the tree we do n total work (at a particular level k, we have 2k nodes and each node
has a list of length n

2k
, so the total cost of merging the lists together on that level is

2k n
2k

= n. Thus, O(log n ·n) = O(n log n) (this algorithm has the same recursive pattern
as merge sort).

So we can evaluate a polynomial at n roots of unity in O(n log n) with the above
algorithm, called the FFT. Thus, if we want to multiply two polynomials f , g, we can
compute FFT(f) ◦ FFT(g), where ◦ is the element-wise multiplication of the outputs
in the point-value representations. How do we interpolate coefficients from this point-
value representation to complete our convolution? We need the inverse FFT, which
luckily can be written in terms of the FFT. Recall that the FFT essentially computes the
multiplication of the Vandermonde matrix with the coefficients to get to the outputs, e.g.
V~a = ~y. To go from the outputs to the coefficients, we can simply multiply by V −1, i.e.
~a = V −1~y. Computing V −1 is tedious and I don’t have much insight (read Introduction
to Algorithms for a proper proof), but it essentially involves just the definition of matrix
inverse and more properties of roots of unity. It turns out that V −1 is essentially V but
evaluated at x−1 instead of x. Also, divide by n. So we can just use the FFT but take
the inverse of the root of unity, and divide each element by n at the end. Finally, we
arrive at the FFT formulation of convolutions.

Theorem 2.2. f ∗ g = FFT−1(FFT (f) ◦ FFT (g)), i.e. convolutions can be done with
FFTs in time O(n log n).

Proof. Follows from the last 5 pages. A concrete implementation can be found here. �

2.1.3 Iterative variant

The recursive algorithm can be made iterative surprisingly elegantly from a pattern in
binary form of the indexes when recursively subdividing. I omit the details here, although
it makes the algorithm O(n) in memory instead of O(n log n) and will likely run faster
than the recursive algorithm. An implementation is above.

2.2 Number Theoretic Transform (NTT)

Another improvement on the FFT comes from the observation that complex roots of
unity were an arbitrary pick, any field with sufficient properties will do. In particular,
we can pick a large prime number p and find an equivalent to a root of unity under
the field modulo p. The details are incredibly tedious and number theory heavy, but
they yield the number theoretic transform , a variant of the FFT which operates on
integers (useful for polynomials of integer coefficients or certain types of data, e.g. music
or images, which have integer pixel values). One downside is that negative numbers do
not exist under modulo, which can be accounted for by assuming large numbers are in
fact negative, changing the range from [0, p) to [−p

2 ,
p
2).
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3 Applications of Convolutions

3.1 Audio Processing

Before we apply 2D convolutions to images, we elucidate the 1D convolution and its
usefulness through an illustrative example.

The anime music quiz problem. We have a song that is 1 minute and 30
seconds long, and a 10 second clip from that song. We wish to compute:

1. Out of a list of songs, which song the clip came from.

2. From a known song, the timestamp where the clip occurred.

(a) Generating a clip from an anime intro.

(b) Comparison between
songs; finds it occurs exactly
35.2 seconds in.

(c) Song with the lowest loss.

Figure 1: An example run of the system.

First, some basics about the representation of audio data. We will use the mp3 file
format at a sample rate of 48kHz. Audio is fundamentally just a list of numbers, where
each number represents the amplitude of the sound wave at that time. A 48kHz sample
rate means there are 48,000 of these measurements per second. Each number is a 16-bit
number in the range [0, 1), which we will transform to an integer in the range [0, 216) for
the NTT. So we have two lists of integers, and now wish to find where the smaller list
“fits” into the larger list the best. One way to do this is to compute the `2 norm , or
the vector difference between the two lists. So we slide the smaller list over the larger
list, computing the sum of squares error as we go. Note that this is very similar to
the convolution, except we to calculate the sum of squares instead of the element-wise
product. We also need to flip one of the lists because the convolution flips a list.

How do we reduce sum of squares to an element-wise product? We notice that
(ai − bj)2 = a2i − 2aibj + b2j for elements of the lists a, b. When we sum over the length
of a (assuming a is the smaller list), we get ‖a‖2 − 2a · b′ + ‖b′‖2, where b′ is the slice
that a overlaps. ‖a‖ is a constant, so it can be ignored. Thus, we only need to compute
a · b′ and ‖b′‖. a · b′ directly follows from a convolution and can be read from a ∗ br,
where br is the reverse of b. Lastly, if we make sure to scan from left to right, then we
can compute ‖b′‖ by storing an intermediate value, and updating it when we slide a an
additional index by subtracting out the front of b′, where a left from, and adding the
new value that a covers.
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Algorithm 1 minimum `2 between two lists

def min_offset(a: list, b: list) -> tuple:
N, M = len(a), len(b)
p = fft(a[::-1], b)[N - 1:]
x2, xy, y2 = sum(x*x for x in a), p[0], \

sum(b[i]*b[i] for i in range(N))
best, l2 = 0, -2*xy + y2
for i in range(1, M - N + 1):

y2 += b[N - 1 + i]*b[N - 1 + i] - b[i - 1]*b[i - 1]
xy = p[i]
d = -2*xy + y2
if d < l2:

best, l2 = i, d
return best, x2 + l2

We need to be careful about a few things. If we don’t pick p for the NTT large
enough, then it won’t work. If m is the largest number in a list and n is the length of the
list, then we need p to be bigger than m2n (the largest a single element can become). n
is 90 · 48, 000 ≈ 4 · 106 and m is 216. m2n = 232 · 4 · 106 ≈ 254. This seems fine since 254

will fit in a long, but this won’t work since we need to compute x2 as part of the FFT,
and (254)2 will definitely overflow. We could get around this overflow by doing modulo
multiplication instead of standard multiplication, but that would introduce a log factor,
making the algorithm 64x slower, an unacceptable slowdown. One trick is to reduce the
bitrate of the mp3 at the sacrifice of audio quality, and go from 16-bit audio to 8-bit
audio. A naive way to do it would be to multiply the real number by 28 and round, but a
better way is the µ-law algorithm, a trick that preserves frequencies closer to the human
voice. A comparison between naive scaling and the µ law is presented here. With 8-bit
audio, m2n = 216 · 4 · 106 ≈ 238. This goes over the limit of 232 for x2 to fit in a long,
but it works in practice since mp3 audio rarely hits maximum volume and our clip is 10
seconds long, and we computed for 90 seconds.

As mentioned in the NTT, we also need to avoid negative numbers. If we have a
value greater than p

2 , we assume it is negative and subtract p from it to get its proper
value, otherwise we keep the value the same.

accounting for negative values
def ntt_sign(l: list, p: int) -> list:

return [x if x < (p >> 1) else x - p for x in l]

An implementation is given here and a video walkthrough here.
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4 2D Convolutions

2D convolutions, a convolution generalized to matrices, are useful in computer vision for
a variety of reasons, including edge detection and convolutional neural networks. Their
exact usage will not be discussed here, and instead we will discuss an efficient way to
calculate a 2D convolution with the FFT we have already developed. We have an “data”
matrix, representing an image, and we have a kernel matrix, which is the matrix we
imagine sliding over the image. This is also known as a filter .

For 2D convolutions, the result is slightly ambiguous depending on how one defines
it. We will use scipy’s definition, where to calculate the value of the convolution at a
particular point, we imagine the bottom right corner of the kernel placed over that point.

Figure 2: A convolution taken from here.

We define the 2D convolution between an image x of size MxN and a kernel h of size
HxW as follows (similar to the 1D case, we assume both matrices are padded with 0’s):

(x ∗ h)[i, j] =
i∑

k=0

j∑
l=0

x[k][l]h[i− k][j − l]

This operation is also symmetric, so what we call the image and the kernel is essen-
tially arbitrary (by convention, the kernel is the smaller matrix). The resulting matrix
is going to be of size (M + H − 1)x(N +W − 1) from the same logic as the 1D case.
Thus, the time it takes to compute the convolution is O(MNHW ). We can, however,
take advantage of a trick if the kernel has a certain property.

4.1 Separable Kernels

A matrix M is separable if it can be written as ~u~vT for some vectors ~u,~v. For example,
the famous Sobel matrix for edge detection is separable:1 0 −1

2 0 −2
1 0 −1

 =

12
1

 [1 0 −1
]
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If a matrix is separable, we can convolute with ~u and then with ~v.

Theorem 4.1. If h = ~u~vT , then (x∗h) = ((x∗~u)∗~v), i.e. we can separate a convolution
into two parts.

Proof.

(x ∗ u)[i, j] =
i∑

k=0

j∑
l=0

x[k][l]u[i− k][j − l] Definition

Since u is a column vector, it only has values when l = j, removing the inner sum.

=

i∑
k=0

x[k][j]u[i− k][0]

Convoluting with v,

((x ∗ u) ∗ v)[i, j] =
i∑

k=0

j∑
l=0

(
k∑

m=0

x[m][l]u[k −m][0])v[i− k][j − l]

Since v is a row vector, it only has values when k = i, removing the outermost sum.

=

j∑
l=0

(

i∑
m=0

x[m][l]u[i−m][0])v[0][j − l]

Swapping the order of summations and renaming m to k,

=

i∑
k=0

j∑
l=0

x[k][l]u[i− k][0]v[0][j − l]

From the fact that h[x][y] = u[x][0]v[0][y],

=
i∑

k=0

j∑
l=0

x[k][l]h[i− k][j − l]

= (x ∗ h)

�

How does this help us? Well, recall the running time of O(MNHW ). If we do two
convolutions of a kernel of Hx1 and another of 1xW , the running time will be O(MNH+
MNW ) = O(MN(H+W )), a significant improvement as HW grows quadratically while
H + W grows linearly. We can also use repeated 1D convolution to compute the 2D
convolution for the specific case of a vector, yielding a O(MN logMN) time algorithm.

However, not every matrix is separable. The conditions are quite strict, a matrix is
separable if and only if every pair of rows is a multiple of each other, i.e. the matrix is
made up of multiples of a particular row vector. As a consequence, the matrix is also
made up of multiples of a particular column vector. These matrices are relatively rare,
so there is utility in deriving a more general algorithm.
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4.2 FFT Algorithm

We can reduce 2D convolutions to 1D convolutions if we’re clever. The observation is
that if we flatten both matrices into a 1D list by reading from top to bottom, left to
right, we can just convolute in 1D and reconstruct the matrix afterwards. We need to
make sure both matrices are sufficiently padded with zeros, such that the zeros force
values in the kernel to their proper rows in the image. It turns out that we can just
pad both matrices to the final column size of the convolution, N +W − 1, flatten both,
convolute with the FFT, and then reshape the resulting list to a matrix of proper size.
In most computer vision applications, the kernel is a square matrix of size KxK, where

Algorithm 2 2D Convolution Algorithm

def flatten(m: list, pad=0) -> list:
""" Flattens a matrix into a list. """
return [x for row in m for x in row + [0]*pad]

def reshape(l: list, m: int, n: int) -> list:
""" Shapes a list into a MxN matrix."""
return [[l[r*n + c] for c in range(n)] for r in range(m)]

def conv(h: list, x: list):
""" Computes the 2D convolution. """
M, N, H, W = len(x), len(x[0]), len(h), len(h[0])
# need to pad the columns to the final size
h, x = flatten(h, N - 1), flatten(x, W - 1)
return reshape(fft(h, x), M + H - 1, N + W - 1)

K is an odd number. The middle value of the kernel is then placed over each pixel of
the image, yielding a transformed image of the same dimensionality as the original. We
can simulate this by simply cutting off the first and last K−1

2 rows and the same for the
columns. This transforms the resulting size from N +K − 1 to N +K − 1− 2K−12 = N .

pruning
def prune(h: list, x: list) -> list:

""" Prunes a convolution for the specific KxK filter case. """
m, k = conv(h, x), min(len(h), len(x))
pad = (k - 1)>>1
return [row[pad:-pad] for row in m[pad:-pad]]
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The running time of the algorithm is going to be O(MN logMN) = O(MN(logN +
logM) = O(MN logN) since we convolute a list of lengthM(N+W−1), and we assume
N ≥M > W . This is not necessarily faster than the brute-force algorithm; it depends on
the kernel size. For simplicity, suppose we have a NxN image and a KxK kernel where
N > K. Brute force yields O(N2K2) while the FFT algorithm yields O(N2 logN).
Thus, if logN < K2 then the FFT algorithm is going to be faster. For K > 5 that is a
fair assumption since K2 = 25, 225 is several million. Obviously the FFT algorithm has
a much larger constant factor, but for a sufficiently large kernel the time savings become
greater and greater.

5 Conclusion

The convolution, an operator very useful for signal, audio, and image processing, can be
efficiently computed with the Fast Fourier Transform, or FFT. If the data is integer, then
floating-point arithmetic can be avoided with the Number Theoretic Transform (NTT),
a variant of the FFT which uses modulo instead of complex numbers, and calculates
entirely in integers.

This lecture skips over the continuous case (what I’ve been calling the Fast Fourier
Transform is more mathematically called the Discrete Fourier Transform , or DFT)
but the idea is essentially the same, any summation turns into an integral. It also skips
over the mathematical interpretation of the FFT, involving decomposing a function into
a series of sine and cosine waves. This is useful for signal processing and audio analysis,
but requires a stronger mathematical background and to be honest, I haven’t studied it
at all myself. Fourier analysis goes deeper than we need here.

Introduction to Algorithms is definitely the most helpful source on the FFT (from
a computer science perspective), and more thorough treatments of the FFT from an
engineering or mathematical standpoint are not hard to find.
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6 Sample Problems

1. SPOJ POLYMUL: Direct application of the FFT.

2. SPOJ MUL: Given 1000 pairs of numbers, compute the product of each pair; each
number can have up to 10,000 digits.

Solution: Think of numbers as polynomials, where the digits are coefficients and
x is 10. Then, you can multiply two numbers by multiplying the polynomials.
However, there is no guarantee that the coefficients of the resulting polynomial
are less than 10, so it is not a valid number. As a last post-processing step, start
from the smallest place value and move your way to the largest, moving the digit
overflow from one place value to the next. Since you iterate over the number of
digits in the number, it takes O(log n) which is dominated by the FFT.

An extension of this idea is the Schönhage–Strassen algorithm, which disregards
the requirement that the intermediate numbers fit in a long, at the cost of being
O(n log n log logn). A more recent algorithm, by Harvey and van der Hoeven,
achieves O(n log n).

3. SPOJ MAXMATCH: Given a string S of length N made up of the characters “a”,
“b”, and “c”, compute the maximum self-matching, where a self-matching is defined
as the number of characters which match between S and S shifted some nonzero
number of characters.

Solution: For an offset i, the size of the overlap will be N − i. So we just need to
find the number of differences, and subtract that from N − i to obtain the number
of matches. The easiest thing to do is to keep track of each character separately,
so to compute the differences for each character. Suppose our character is “a”. We
encode “a” as a 0, and the other characters as a 1. We then find the `2 norm
between this new list and this list with N 1’s added to it (so that when we overlap,
the non “a” characters aren’t counted). This has the complication of counting “a” ’s
which are off the edge of the string, which we can account for by simply keeping
track of the number of “a” ’s we have seen.

Given a[i] as the number of mismatches with the character “a” at a shift of i, and
b[i], c[i], the number of matches is N − i− a[i]+b[i]+c[i]

2 . We divide by 2 because we
count each mismatch twice (once for each character in the pair).

A much conceptually simpler algorithm is to encode “a”, “b”, and “c” cleverly and
then compute the matches in one shot. If we encode “a” as (1, 0, 0), “b” as (0,
1, 0), and “c” as (0, 0, 1), the FFT of the resulting list with its reverse will give
us the number of matches at each index because the character representations dot
each other will be 1 if they are equal, and 0 if they are unequal. Thus, the FFT
will give us exactly the number of matches, but we need to only look at every 3rd
index since the other 2 are byproducts of our transformation.

In practice, running one big FFT is faster than running 3 smaller FFTs.
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4. Codechef FARASA: Given an array, find the number of distinct sums of a contigu-
ous subarray.

Solution: editorial.

Fair warning, time bounds are ridiculous.

5. Codeforces Round #296: Given two strings T, S and an error bound k, find all the
positions where T occurs in S, where T “occurring” at some index i means that the
jth character of T has a corresponding character within k of its position.

Solution: Honestly no clue but it has the “FFT” tag.

6. String matching with wildcards: Given two binary strings T, S, T has length N
and has wildcards which match any character in S, find all occurrences of T in S.

Solution: Encode 1 as 1 and 0 as -1. The dot product between T and the slice
that T overlaps with S will be be N if they match exactly and less than N if they
don’t match exactly. To account for wildcards, encode a wildcard as 0 and count
the number of wildcards, C. Then, if they match exactly it will be N −C, and less
then that if they don’t.

This can be generalized to non-binary strings if you apply the above algorithm
to each character, setting that character as 1 and not that character as -1. Sum
over all possible characters, and that will tell you whether there is a mismatch
somewhere (similar to SPOJ MAXMATCH).

This idea can also be applied to string matching without wildcards. Encode each
character as its ASCII value in a polynomial, and compute the `2-norm between T
and S. The `2 norm will be 0 if they match, and positive if they don’t.

7. 3SUM: Given a list of integers between −N and N , find 3 numbers that add up to
0 (duplicates are allowed).

Solution: The basic idea will be to encode the list into a length 2N polynomial
p where the degree is an integer value and the coefficient is whether that value
appears in the array. Compute p3 and read off the coefficient of x0. However, this
doesn’t work if the degrees are negative. If the most negative power of x in p is
x−N , We can simply multiply p by xN to make every power positive, making a new
polynomial p′. Then, after computing (p′)3, instead of looking at the coefficient of
x0, we can look at the coefficient of x3N (accounting for the fact that p′ = xNp,
(p′)3 = x3Np3, p3 = (p′)3

x3N

Alternative solution, if duplicates aren’t allowed: here (look for “color coding”).

8. Anime Music Quiz: Guess which anime an intro/outro comes from.

Solution: The Shazam algorithm.
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7 Appendix

Theorem 7.1. eix = cosx+ i sinx, i.e. Euler’s formula

Proof. We have the initial value problem (IVP)

dy

dx
= f(x, y), y(x0) = y0

Picard’s existence and uniqueness theorem says that if f and ∂f
∂y are continuous functions

on some rectangle R that contains (x0, y0), then the IVP has an unique solution on some
interval I whose bounds are the regions where the hypotheses hold.

In our particular case, we have f(x, y) = iy and y(0) = 1, so ∂f
∂y = i. By Picard’s

theorem, the IVP has a unique solution on the interval I where y is continuous and ∂f
∂y is

continuous. i is continuous everywhere, so the IVP will have an unique solution wherever
y is continuous.

Because this differential equation is separable, we can directly solve for y.

dy

dx
= iy∫

1

iy
dy =

∫
dx

1

i
ln |iy| = x+ C

ln |iy| = ix+ C

iy = Ceix

y = Ceix

Taking into account the initial condition, y(0) = 1 = Ce0 = C. So y = eix, which is
continuous on R. Picard’s theorem therefore guarantees the uniqueness of this solution.
However, note that cosx+ i sinx is also a solution to the IVP. First, it fulfills the initial
condition since y(0) = cos 0 + i sin 0 = 1. Second, it fulfills the differential equation:

dy

dx
= − sinx+ i cosx

= i2 sinx+ i cosx Definition of i
= i(cosx+ i sinx)

= iy

Since eix is the unique solution to the IVP on R, eix = cosx+ i sinx. �
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8 Past Lectures

1. “Edge Detection”, (Alexey Didenkov, 2018)

2. “Fast Multiplication: Karatsuba and FFT” (Haoyuan Sun, 2016)

3. “Multiplying Polynomials”, (Haoyuan Sun, 2015)

4. “Fast Fourier Transform”, (Sreenath Are, 2013)

9 References

1. Introduction to Algorithms, chapter 30 (very helpful)

2. The number theoretic transform

3. µ-law algorithm

4. Picard’s Existence and Uniqueness Theorem

5. Separable convolutions
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