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Introduction

The Fast Fourier Transform (FFT) is a common technique
for signal processing and has many engineering
applications. It also has a fairly deep mathematical basis,
but we will ignore both those angles in favor of accessibility.
Instead, we will approach the FFT from the most intuitive
angle, polynomial multiplication.

First, we represent polynomials by a list of coefficients, where
the number at index 0 represents the coefficient of x0, the
number at index 1 represents the coefficient of x1, and so on.

Polynomial representation

The polynomial 3+ 2x + 4x2 becomes [3, 2, 4].
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Definition of the Convolution

The multiplication of two polynomials f and g is then
simply each term of f multiplied with each term of g and
then added up.
We can also assume that f and g are the same length N,
where the polynomial of lesser degree is padded with zeros.
If we say the product is p, we can give an formula for an
index in p in the following way:

Definition of the convolution

p[n] = (f ∗ g)[n] =
n∑

i=0

f [i ]g [n − i ]
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Intuition Behind a Convolution

p[n] is the coefficient of xn in the product, and it is formed
by adding up all the possible ways to get to xn, i.e. f [0]x0

times g [n]xn, f [1]x1 times g [n − 1]xn−1, etc.
Intuitively, this “flips” g , and then the resulting product is
computed by “sliding” g over f and then computing the
dot product between the two lists, or a weighted average.
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Multiplication as Convolution Example

Suppose we have the polynomial 3+ 2x + 4x2 = [3, 2, 4]
and the polynomial 1+ 3x + 2x2 = [1, 3, 2].

We first flip the second list to get [2, 3, 1].
We then slide [2, 3, 1] over [3, 2, 4], imagining there are
zeros such that the parts of [2, 3, 1] that don’t overlap
with [3, 2, 4] aren’t counted.

1 For the first value, 1 overlaps with 3 so we get 3.
2 Then, [3, 1] overlaps with [3, 2] so we get 3 · 3+ 1 · 2 = 11.
3 [2, 3, 1] overlaps with [3, 2, 4] = 16
4 [2, 3] overlaps [2, 4] = 16,
5 and finally [2] overlaps with [4] to give 8.

Our final answer is then [3, 11, 16, 16, 8] =
3+ 11x + 16x2 + 16x3 + 8x4 = (3+ 2x + 4x2)(1+ 3x + 2x2).
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Commutativity of the Convolution

What if we computed g ∗ f ? It should be the same since
polynomial multiplication should be commutative.

Theorem

f ∗ g = g ∗ f , i.e. polynomial multiplication is commutative.
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Proof of the Commutativity of the Convolution

Proof.

We have (f ∗ g)(n) =
∑n

i=0 f [i ]g [n − i ] by definition. Perform
the variable substitution k = n − i , so i = n − k . Summing
from

∑n
i=0 will sum from k = n to k = 0 in descending order,

so
∑n

i=0 =
∑n

k=0 (from the commutativity of addition).

(f ∗ g)[n] =
n∑

i=0

f [i ]g [n − i ] Definition

=
n∑

k=0

f [n − k]g [k] Substitution

= (g ∗ f )
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The Fast Fourier Transform

This operation is known as a convolution, which is
equivalent to polynomial multiplication in the discrete case
and is denoted f ∗ g .
Its relevance to image processing will be expounded on
later (for now, this puts the “convolutional” in
“Convolutional Neural Networks”).
Today’s lecture is about the Fast Fourier Transform, an
efficient algorithm to perform convolutions.
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Naive

A naive approach to the convolution of two lists of length
N,M will have runtime O(NM) using the standard
polynomial multiplication algorithm (each term of the first
list multiplied with each term of the second list).

What will be the length of the resulting list?
The first list is a polynomial of degree N − 1, the second of
degree M − 1, so the resulting polynomial has degree
(N − 1) + (M − 1) = N +M − 2.
A polynomial of degree D has D + 1 coefficients, so the
length of the product is N +M − 1. Thus,

Lower bound for the runtime of a convolution

The length of the convolution is N +M − 1, which is linear, so
a better runtime than quadratic could exist.
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Point-Value Representation
An alternative way to express a polynomial

The key observation is that we can represent polynomials
in a different form than a coefficient list.
In particular, we can use a point-value representation, or a
list of (x , y) pairs that give an input and the corresponding
output of a polynomial.

Point-value representation

A point-value representation for a polynomial p is a list of
distinct x values and their corresponding y values, e.g.
{(x0, p(x0)), (x1, p(x1)), . . . , (xn, p(xn))}
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Moving between Representations

Evaluation

We call the process of going from a coefficient representation to
a point-value representation evaluation, since we evaluate the
polynomial at multiple points to get the point-value
representation.

Interpolation

Likewise, we call the process of going from a point-value
representation to a coefficient representation interpolation,
since we are finding a polynomial which “fits” the data.

Suppose we have a polynomial of degree n.
We then need a certain number of points for evaluation
and interpolation to be well-defined.
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Well-defined Representations

Evaluation is always well-defined, because we can always
evaluate a polynomial of any degree or coefficient
representation.
However, if we don’t have enough points, interpolation is
not necessarily possible.

Ill-defined representation

Consider the point-value representation [(0, 0), (1, 1)] and a
degree of 2. This could be the polynomial x2 or 2x2 − x .

So for a polynomial of degree n, we need at least n + 1
distinct points (since each point gives another linear
equation constraining the n + 1 polynomial coefficients).
We can in fact prove that if we have n + 1 points, that
uniquely determines a polynomial of degree n.



FFT

Huan

Introduction

Algorithms
Naive

FTT

Point-Value

Complex Roots

Iterative

NTT

Applications
Audio

2D Convolutions

Separable Kernels

FFT Algorithm

Conclusion

Sample
Problems

Past
Lectures

References

Well-defined Representations

Evaluation is always well-defined, because we can always
evaluate a polynomial of any degree or coefficient
representation.
However, if we don’t have enough points, interpolation is
not necessarily possible.

Ill-defined representation

Consider the point-value representation [(0, 0), (1, 1)] and a
degree of 2. This could be the polynomial x2 or 2x2 − x .

So for a polynomial of degree n, we need at least n + 1
distinct points (since each point gives another linear
equation constraining the n + 1 polynomial coefficients).
We can in fact prove that if we have n + 1 points, that
uniquely determines a polynomial of degree n.



FFT

Huan

Introduction

Algorithms
Naive

FTT

Point-Value

Complex Roots

Iterative

NTT

Applications
Audio

2D Convolutions

Separable Kernels

FFT Algorithm

Conclusion

Sample
Problems

Past
Lectures

References

Well-defined Representations

Evaluation is always well-defined, because we can always
evaluate a polynomial of any degree or coefficient
representation.
However, if we don’t have enough points, interpolation is
not necessarily possible.

Ill-defined representation

Consider the point-value representation [(0, 0), (1, 1)] and a
degree of 2. This could be the polynomial x2 or 2x2 − x .

So for a polynomial of degree n, we need at least n + 1
distinct points (since each point gives another linear
equation constraining the n + 1 polynomial coefficients).
We can in fact prove that if we have n + 1 points, that
uniquely determines a polynomial of degree n.



FFT

Huan

Introduction

Algorithms
Naive

FTT

Point-Value

Complex Roots

Iterative

NTT

Applications
Audio

2D Convolutions

Separable Kernels

FFT Algorithm

Conclusion

Sample
Problems

Past
Lectures

References

Proof of the Point-Value Representation

Theorem

A point-value representation with n distinct points uniquely
determines a polynomial of degree n − 1.

Proof.

We have a polynomial of the form
p(x) = a0 + a1x + a2x

2 + · · ·+ an−1x
n−1 and n points of the

form (xi , yi ) such that p(xi ) = yi . Those constraints determine
the following matrix equation:

1 x0 x20 · · · xn−10
1 x1 x21 · · · xn−11
...

...
...

. . .
...

1 xn−1 x2n−1 · · · xn−1n−1




a0
a1
...

an−1

 =


y0
y1
...

yn−1


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Proof of the Point-Value Representation

Proof.

The leftmost matrix is known as the Vandermonde matrix,
denoted V (x0, x1, . . . , xn−1) which has the following
determinant (left as an exercise for the reader):∏

0≤j<i≤n−1
(xi − xj)

A matrix is invertible if and only if its determinant is nonzero, so
this matrix is invertible if each xi is distinct. Thus, we can solve
for the coefficients by multiplying by the inverse, so ~a = V−1~y ,
and this solution is unique since an invertible matrix is a
bijective transformation between a vector space and itself.
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Lagrange’s Formula

This proof directly gave an easy construction of the
interpolating polynomial, by V−1~y .
Matrix inverses can be computed in O(n3) as an easy
upper bound, but that can be improved with Lagrange’s
interpolating formula to yield a O(n2) time algorithm.
I will not elaborate on Lagrange’s formula in this lecture,
but a good Wikipedia page is available here.

https://en.wikipedia.org/wiki/Lagrange_polynomial
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Evaluation

If we have a list of N coefficients, then the polynomial is of
degree N − 1 and thus we need N distinct points.
We first figure out how to evaluate a polynomial at a single
point, and will repeat the process for all the points.
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Evaluating a Polynomial

Suppose we have a polynomial of the form
p(x) = a0 + a1x + a2x

2 + · · ·+ an−1x
n−1.

If we evaluate at a particular x0, we compute each aix0
i

term, of which there are N.
This would take O(N2) time with repeated multiplication
and O(N logN) time with fast exponentiation.
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Horner’s Rule

But we can do better with Horner’s rule.
We notice that the degree in coefficient form is
monotonically increasing, so we can successively factor out
a multiplication by x .

Horner’s rule

p(x) = a0 + x(a1 + x(a2 + · · ·+ x(an−2 + xan−1)))

We do exactly N − 1 multiplications and additions, so the
algorithm runs in O(N).
Evaluating a polynomial at N points then takes
O(N · N) = O(N2) time.



FFT

Huan

Introduction

Algorithms
Naive

FTT

Point-Value

Complex Roots

Iterative

NTT

Applications
Audio

2D Convolutions

Separable Kernels

FFT Algorithm

Conclusion

Sample
Problems

Past
Lectures

References

Horner’s Rule

But we can do better with Horner’s rule.
We notice that the degree in coefficient form is
monotonically increasing, so we can successively factor out
a multiplication by x .

Horner’s rule

p(x) = a0 + x(a1 + x(a2 + · · ·+ x(an−2 + xan−1)))

We do exactly N − 1 multiplications and additions, so the
algorithm runs in O(N).
Evaluating a polynomial at N points then takes
O(N · N) = O(N2) time.



FFT

Huan

Introduction

Algorithms
Naive

FTT

Point-Value

Complex Roots

Iterative

NTT

Applications
Audio

2D Convolutions

Separable Kernels

FFT Algorithm

Conclusion

Sample
Problems

Past
Lectures

References

Summary

So we can do both evaluation and interpolation in O(n2)
and both are well-defined if we have enough points.
Why did we figure this out?
We can multiply two polynomials efficiently if we have the
point-value representations of each!
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Multiplying in Linear Time

Suppose we have polynomials f , g in coefficient form.
We also assume that the polynomials are evaluated at the
same points, so we have

[(x0, f (x0)), (x1, f (x1)), . . . ]

and
[(x0, g(x0)), (x1, g(x1)), . . . ]

f ∗ g is then simply
[(x0, f (x0)g(x0)), (x1, f (x1)g(x1)), . . . ]

or the element-wise multiplication of the two lists.

This can be easily computed in O(n)!
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Overall Framework

So our algorithm for polynomial multiplication is as follows:
1 Evaluate a coefficient representation into a point-value

representation.

2 Multiply the two point-value representations in linear time.
3 Interpolate the resulting point-value representation back to

coefficients.
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Overall Framework

So our algorithm for polynomial multiplication is as follows:
1 Evaluate a coefficient representation into a point-value

representation.
2 Multiply the two point-value representations in linear time.

3 Interpolate the resulting point-value representation back to
coefficients.
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Overall Framework
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1 Evaluate a coefficient representation into a point-value
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Need for Picking Special Points

The speed of this algorithm is contingent on our ability to
quickly evaluate and interpolate a polynomial.
Currently, with our O(n2) time evaluation and interpolation
algorithms, we match the O(n2) naive algorithm.
However, under this framework, we can improve the time if
we pick our points cleverly rather than arbitrarily.
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Complex Roots of Unity

Our special points are going to be complex roots of unity, or
roots of 1 that are allowed to have an imaginary component.

Complex roots of unity

The second root of 1 can be 1 or −1 (taking “second root” to
mean anything which squared is 1). The fourth root of 1 can be
1, −1, i , or −i . (since i4 = (i2)2 = (−1)2 = 1).
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Computing Complex Roots

To easily compute these roots, we can rewrite 1 using

Euler’s formula

e ix = cos x + i sin x (a proof of this appears in the appendix).

e2πi = cos 2π + i sin 2π = 1

So we can take a nth root by simply raising

n
√
1 = (e2πi )

1
n

so a root is
e

2πi
n
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Properties of Complex Roots

However, note that we can rewrite 1 in many different
ways since sine and cosine are periodic.

Since adding 2π doesn’t change the value of sine and
cosine, 1 is also equal to e4πi , e6πi , and so on.
In general, e2πki is equal to 1 for any integer k , so if we
take the nth root, e

2πki
n is also going to be a valid root.

However, not every k gives a distinct root of unity.
k = n + 1 is equivalent to k = 1 since

cos

(
2π(n + 1)

n

)
= cos

(
2π +

2π
n

)
= cos

(
2π
n

)
This generalizes such that an power k equivalent to j mod
n will have the same root.
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Principle Root of Unity

We can easily keep track of the n distinct nth roots of unity by
writing them as powers of the principle root of unity.

Principle Root of Unity

The principle root of unity is the root of unity when k = 1.

Notation

We will denote this principle root as ωn, where ωn = e
2πi
n .

Since we picked k = 1, we can represent every nth root of unity
as a power of this root of unity since

e
2πki
n = (e

2πi
n )k = ωk

n
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Properties of a Principle Root

Note that every power of the principle root of unity is itself
a root of unity, because

(ωk
n )

n = (ωn
n)

k = 1k = 1

We now come to an observation that will be instrumental
in developing the FFT — that the square of a nth principle
root of unity is a n

2 th principle root of unity.
This follows nearly from definition:

ω2
n = (e

2πi
n )2

= e
4πi
n

= e
2πi
n
2

= ω n
2



FFT

Huan

Introduction

Algorithms
Naive

FTT

Point-Value

Complex Roots

Iterative

NTT

Applications
Audio

2D Convolutions

Separable Kernels

FFT Algorithm

Conclusion

Sample
Problems

Past
Lectures

References

Properties of a Principle Root

Note that every power of the principle root of unity is itself
a root of unity, because

(ωk
n )

n = (ωn
n)

k = 1k = 1

We now come to an observation that will be instrumental
in developing the FFT — that the square of a nth principle
root of unity is a n

2 th principle root of unity.
This follows nearly from definition:

ω2
n = (e

2πi
n )2

= e
4πi
n

= e
2πi
n
2

= ω n
2



FFT

Huan

Introduction

Algorithms
Naive

FTT

Point-Value

Complex Roots

Iterative

NTT

Applications
Audio

2D Convolutions

Separable Kernels

FFT Algorithm

Conclusion

Sample
Problems

Past
Lectures

References

Setting up a Recurrence Relation

We now show that evaluating a polynomial at n distinct
nth roots of unity can be written as a recurrence relation.
First, cleverly rewrite a polynomial into two parts.
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Splitting a Polynomial

Suppose we have the polynomial

p(x) = a0 + a1x + a2x
2 + · · ·+ an−1x

n−1

We divide the coefficient list of p into two parts, one with
even powers and the other with odd powers, the left and
right halves respectively.

We assume that n is a power of 2 so that p can always be
divided in such a manner.
If n isn’t, we can always pad with 0’s.

p(x) = a0 + a1x + a2x
2 + · · ·+ an−1x

n−1 (1)

L(x) = a0 + a2x + a4x
2 + . . . (2)

R(x) = a1 + a3x + a5x
2 + . . . (3)

It follows that p can be written in terms of L and R :
p(x) = L(x2) + xR(x2) (4)
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Recurrence Relation

Recall that we are trying to evaluate p at n roots of unity.

Suppose we have a function that takes as input a list of
coefficients and returns the evaluation at n roots of unity.
We can define this function in terms of itself, because we
have a recurrence relation — divide the list in two, giving
us L evaluated at n

2 th roots of unity and the same for R
(from the fact that a nth root of unity squared is a n

2 th
root of unity).
Finally, we can reconstruct p from L,R according to (4).
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Accounting for Edge Cases

This works directly for ω0
n to ω

n
2−1
n , however for a power greater

than n
2 − 1, we need to put it in terms of a power less than n

2
(since L and R are only n

2 long).
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Derivation of Negative Property

Luckily,

ω
k+ n

2
n = cos

(
2π

k + n
2

n

)
+ i sin

(
2π

k + n
2

n

)
= cos

(
2πk
n

+ π

)
+ i sin

(
2πk
n

+ π

)
= −ωk

n
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Putting it All Together

So, for some power k of the base root of unity we can compute

p(ωk
n ) = L(ω2k

n ) + ωk
nR(ω

2k
n )

and, using the negative property just derived,

p(ω
k+ n

2
n ) = L(ω2k

n )− ωk
nR(ω

2k
n )
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Base Case

We compute L and R recursively, and we’re done!

However, we need to have a base case.
Recall our function takes in a coefficient list of length n
representing a polynomial, and returns the evaluation of
that polynomial at each of the n distinct nth roots of unity.
The simplest base case is just n = 1, at which point we
can stop dividing the list in half and evaluate directly.
The only 1st root of unity is 1, and evaluating a
polynomial at x = 1 is equal the sum of the coefficients,
which for a polynomial with one coefficient is just its
singular coefficient.

Base case

Thus, we can just return the coefficient list of the polynomial,
or the input to the function when n = 1.
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Analysis of Runtime

This algorithm has the same recursion as merge sort.

At every level of the recursion, we divide the list in half,
making the depth of the recursive tree log n.
At a particular level k , we have 2k nodes, and each node
has a list of length n

2k , so the total cost of merging the lists
together on that level is 2k n

2k = n.
Thus, O(log n · n) = O(n log n).
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So we can evaluate a polynomial at n roots of unity in
O(n log n) with the above algorithm, called the FFT.

If we want to multiply two polynomials f and g , we can
compute FFT(f ) ◦ FFT(g), where ◦ is the element-wise
multiplication of the outputs in the point-value
representations.
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Inverse FFT

How do we interpolate coefficients from this point-value
representation to complete our convolution?

We need the inverse FFT, which luckily can be written in
terms of the FFT. Recall that the FFT essentially
computes the multiplication of the Vandermonde matrix
with the coefficients to get to the outputs, e.g. V ~a = ~y .
To go from the outputs to the coefficients, we can simply
multiply by V−1, i.e. ~a = V−1~y .
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Inverse FFT

Computing V−1 is tedious and I don’t have much insight
(read Introduction to Algorithms for a proper proof), but it
essentially involves just the definition of matrix inverse and
more properties of roots of unity.

It turns out that V−1 is essentially V but evaluated at x−1

instead of x . Also, divide by n.
So we can just use the FFT but take the inverse of the
root of unity, and divide each element by n at the end.
Finally, we arrive at the FFT formulation of convolutions.
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Convolution Theorem

Theorem

f ∗ g = FFT−1(FFT (f ) ◦ FFT (g)), i.e. convolutions can be
done with FFTs in time O(n log n).

Proof.

Follows from the presentation up to this point.

A concrete implementation can be found here.

https://gist.github.com/stephen-huan/aa609965c86d750736398c28b025f9be#fast-fourier-transform
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Iterative FFT

The recursive algorithm can be made iterative surprisingly
elegantly from a pattern in binary form of the indexes when
recursively subdividing.

I omit the details here, although it makes the algorithm
O(n) in memory instead of O(n log n) and will likely run
faster than the recursive algorithm.
An implementation is above.
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Number Theoretic Transform (NTT)

Another improvement on the FFT comes from the
observation that complex roots of unity were an arbitrary
pick, any field with sufficient properties will do.

In particular, we can pick a large prime number p and find
an equivalent to a root of unity under the field modulo p.
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Uses of the NTT

The details are incredibly tedious and number theory heavy, but
they yield the number theoretic transform, a variant of the FFT
which operates on integers.

Use cases of the NTT

The NTT is useful for polynomials of integer coefficients or
certain types of data, e.g. music or images, which have integer
pixel values.
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Accounting for Negative Numbers

One downside is that negative numbers do not exist under
modulo, which can be accounted for by assuming large numbers
are in fact negative, changing the range from [0, p) to [−p

2 ,
p
2 ).

accounting for negative values
def ntt_sign(l: list, p: int) -> list:

return [x if x < (p >> 1) else x - p for x in l]
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The Anime Music Quiz Problem

Before we apply 2D convolutions to images, we elucidate the 1D
convolution and its usefulness through an illustrative example.

The anime music quiz problem.

We have a song that is 1 minute and 30 seconds long, and a 10
second clip from that song. We wish to compute:

1 Out of a list of songs, which song the clip came from.
2 From a known song, the timestamp where the clip

occurred.
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Example Run

(a) Generating a clip from an anime intro.

(b) Comparison between songs;
finds that it occurs exactly 35.2
seconds into the song.

(c) Song with the lowest loss.

Figure: An example run of the system.
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Audio Information

First, some basics about the representation of audio data.

We will use the mp3 file format at a sample rate of 48kHz.
Audio is fundamentally just a list of numbers, where each
number represents the amplitude of the sound wave at that
time. A 48kHz sample rate means there are 48,000 of
these measurements per second.
Each number is a 16-bit float in the range [0, 1), which we
change into an integer in [0, 216) for the NTT.
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Modeling the Problem

So we have two lists of integers, and now wish to find
where the smaller list “fits” into the larger list the best.

One way to do this is to compute the `2 norm, or the
vector difference between the two lists.
So we slide the smaller list over the larger list, computing
the sum of squares error as we go.
This seems very similar to the convolution, except we
calculate the sum of squares instead of the dot product.
We also need to flip one of the lists because the
convolution flips a list.
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vector difference between the two lists.

So we slide the smaller list over the larger list, computing
the sum of squares error as we go.
This seems very similar to the convolution, except we
calculate the sum of squares instead of the dot product.
We also need to flip one of the lists because the
convolution flips a list.
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Turning Sum of Squares into Convolutions

How do we reduce sum of squares to a dot product?

We notice that for elements of the lists a, b

(ai − bj)
2 = a2i − 2aibj + b2j

When we sum over the length of a, assuming a is the
smaller list, we get:

‖a‖2 − 2a · b′ +
∥∥b′∥∥2

where b′ is the slice that a overlaps.
‖a‖ is a constant, so it can be ignored. Thus, we only need
to compute a · b′ and ‖b′‖2.
a · b′ directly follows from a convolution and can be read
from a ∗ br , where br is the reverse of b.
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Turning Sum of Squares into Convolutions

Lastly, we can compute ‖b′‖2 with two-pointer logic.
First, compute the very first value of ‖b′‖2 as usual.
If we make sure to scan from left to right, then only two
things change in b′: it loses a value from the left and it
gains a new value from the right.
We can account for this in ‖b′‖2 by subtracting out the
left value squared and adding in the right value squared.
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Minimum `2

Algorithm minimum `2 between two lists

def min_offset(a: list, b: list) -> tuple:
N, M = len(a), len(b)
p = fft(a[::-1], b)[N - 1:]
x2, xy, y2 = sum(x*x for x in a), p[0], \

sum(b[i]*b[i] for i in range(N))
best, l2 = 0, -2*xy + y2
for i in range(1, M - N + 1):

y2 += b[N - 1 + i]*b[N - 1 + i] - b[i - 1]*b[i - 1]
xy = p[i]
d = -2*xy + y2
if d < l2:

best, l2 = i, d
return best, x2 + l2
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NTT Considerations

We need to be careful about a few things. If we don’t pick
p for the NTT large enough, then it won’t work.

If m is the largest number in a list and n is the length of
the list, then we need p to be bigger than m2n, the largest
a single element can become.
n is 90 · 48, 000 ≈ 4 · 106 and m is 216.
m2n = 232 · 4 · 106 ≈ 254.
This seems fine since 254 will fit in a long, but this won’t
work since we need to compute x2 as part of the FFT, and
(254)2 will definitely overflow.
We could get around this overflow by doing modulo
multiplication instead of standard multiplication, but that
would introduce a log factor, making the algorithm 64x
slower, an unacceptable slowdown.
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µ-law Companding Algorithm

One trick is to reduce the bitrate of the mp3 at the expense
of audio quality, going from 16-bit audio to 8-bit audio.

A naive way to do it would be to multiply the real number
by 28 and round, but a better way is the µ-law algorithm, a
trick that preserves frequencies closer to the human voice.
A comparison between scaling and the µ-law is shown here.
With 8-bit audio, m2n = 216 · 4 · 106 ≈ 238. This goes over
the limit of 232 for x2 to fit in a long, but it works in
practice since audio rarely hits maximum volume and our
clip is 10 seconds long; we computed for 90 seconds.
An implementation is given here and a demonstration here.

https://youtu.be/PqkE_t5cCoA
https://github.com/stephen-huan/anime-music-quiz
https://youtu.be/7fUicc_lIGA
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2D Convolutions

2D convolutions, a convolution generalized to matrices, are
useful in computer vision for a variety of reasons, including
edge detection and convolutional neural networks.
Their exact usage will not be discussed here, and instead
we will discuss an efficient way to calculate a 2D
convolution with the FFT we have already developed.

Definitions

We have an “data” matrix, representing an image, and we have
a kernel matrix, which is the matrix we imagine sliding over the
image. This is also known as a filter .



FFT

Huan

Introduction

Algorithms
Naive

FTT

Point-Value

Complex Roots

Iterative

NTT

Applications
Audio

2D Convolutions

Separable Kernels

FFT Algorithm

Conclusion

Sample
Problems

Past
Lectures

References

Scipy Definition

For 2D convolutions, the result is slightly ambiguous,
depending on the exact definition.
We will use scipy’s definition, where to calculate the value
of the convolution at a particular point, we imagine the
bottom right corner of the kernel placed over that point.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html


FFT

Huan

Introduction

Algorithms
Naive

FTT

Point-Value

Complex Roots

Iterative

NTT

Applications
Audio

2D Convolutions

Separable Kernels

FFT Algorithm

Conclusion

Sample
Problems

Past
Lectures

References

Convolution Example

Figure: A convolution taken from here.

https://petar-v.com/GAT/
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Definition of a 2D Convolution

We define the 2D convolution between an image x of size MxN
and a kernel h of size HxW as follows (similar to the 1D case,
we assume both matrices are padded with 0’s):

Definition of the 2D convolution

(x ∗ h)[i , j ] =
i∑

k=0

j∑
l=0

x [k][l ]h[i − k][j − l ]
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This operation is also symmetric, so what we call the
image and the kernel is essentially arbitrary.
By convention, the kernel is the smaller matrix.
The resulting matrix is going to be of size
(M + H − 1)x(N +W − 1) from the same logic as the 1D
case. Thus, the running time is O(MNHW ).
We can, however, take advantage of a trick if the kernel
has a certain property.



FFT

Huan

Introduction

Algorithms
Naive

FTT

Point-Value

Complex Roots

Iterative

NTT

Applications
Audio

2D Convolutions

Separable Kernels

FFT Algorithm

Conclusion

Sample
Problems

Past
Lectures

References

Table of Contents

1 Introduction
2 Algorithms

Naive
Fast Fourier Transform

Point-Value Representation
Complex Roots of Unity
Iterative Variant
Number Theoretic Transform

3 Applications of Convolutions
Audio Processing
2D Convolutions
Separable Kernels
FFT Algorithm

4 Conclusion
5 Sample Problems
6 Past Lectures
7 References



FFT

Huan

Introduction

Algorithms
Naive

FTT

Point-Value

Complex Roots

Iterative

NTT

Applications
Audio

2D Convolutions

Separable Kernels

FFT Algorithm

Conclusion

Sample
Problems

Past
Lectures

References

Separable Kernels

Separable

A matrix M is separable if it can be written as ~u~vT for some
vectors ~u, ~v .

Sobel matrix

The famous Sobel matrix for edge detection is separable:1 0 −1
2 0 −2
1 0 −1

 =

12
1

 [1 0 −1
]

Separating the convolution

If M is separable, we can convolve with ~u and then with ~v .
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Proof of Separability

Theorem

If h = ~u~vT , then (x ∗ h) = ((x ∗ ~u) ∗ ~v), i.e. we can separate a
convolution into two parts.

Proof.

(x ∗ u)[i , j ] =
i∑

k=0

j∑
l=0

x [k][l ]u[i − k][j − l ] Definition

Since u is a column vector, it only has values when l = j ,
removing the inner sum.

=
i∑

k=0

x [k][j ]u[i − k][0]
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Proof of Separability

Proof.

Convoluting with v ,

((x ∗ u) ∗ v)[i , j ] =
i∑

k=0

j∑
l=0

(
k∑

m=0

x [m][l ]u[k −m][0])v [i − k][j − l ]

Since v is a row vector, it only has values when k = i , removing
the outermost sum.

=

j∑
l=0

(
i∑

m=0

x [m][l ]u[i −m][0])v [0][j − l ]
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Proof of Separability

Proof.

Swapping the order of summations and renaming m to k ,

=
i∑

k=0

j∑
l=0

x [k][l ]u[i − k][0]v [0][j − l ]

From the fact that h[x ][y ] = u[x ][0]v [0][y ],

=
i∑

k=0

j∑
l=0

x [k][l ]h[i − k][j − l ]

= (x ∗ h)
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Runtime Analysis

How does this help us?

Well, recall the running time of O(MNHW ).
If we do two convolutions of a kernel of Hx1 and another
of 1xW , the running time will be
O(MNH +MNW ) = O(MN(H +W )).
This is a significant improvement as HW grows
quadratically while H +W grows linearly.
We can also use repeated 1D convolution to compute the
2D convolution for the specific case of a vector, yielding a
O(MN logMN) time algorithm.



FFT

Huan

Introduction

Algorithms
Naive

FTT

Point-Value

Complex Roots

Iterative

NTT

Applications
Audio

2D Convolutions

Separable Kernels

FFT Algorithm

Conclusion

Sample
Problems

Past
Lectures

References

Runtime Analysis

How does this help us?
Well, recall the running time of O(MNHW ).

If we do two convolutions of a kernel of Hx1 and another
of 1xW , the running time will be
O(MNH +MNW ) = O(MN(H +W )).
This is a significant improvement as HW grows
quadratically while H +W grows linearly.
We can also use repeated 1D convolution to compute the
2D convolution for the specific case of a vector, yielding a
O(MN logMN) time algorithm.



FFT

Huan

Introduction

Algorithms
Naive

FTT

Point-Value

Complex Roots

Iterative

NTT

Applications
Audio

2D Convolutions

Separable Kernels

FFT Algorithm

Conclusion

Sample
Problems

Past
Lectures

References

Runtime Analysis

How does this help us?
Well, recall the running time of O(MNHW ).
If we do two convolutions of a kernel of Hx1 and another
of 1xW , the running time will be
O(MNH +MNW ) = O(MN(H +W )).

This is a significant improvement as HW grows
quadratically while H +W grows linearly.
We can also use repeated 1D convolution to compute the
2D convolution for the specific case of a vector, yielding a
O(MN logMN) time algorithm.



FFT

Huan

Introduction

Algorithms
Naive

FTT

Point-Value

Complex Roots

Iterative

NTT

Applications
Audio

2D Convolutions

Separable Kernels

FFT Algorithm

Conclusion

Sample
Problems

Past
Lectures

References

Runtime Analysis

How does this help us?
Well, recall the running time of O(MNHW ).
If we do two convolutions of a kernel of Hx1 and another
of 1xW , the running time will be
O(MNH +MNW ) = O(MN(H +W )).
This is a significant improvement as HW grows
quadratically while H +W grows linearly.

We can also use repeated 1D convolution to compute the
2D convolution for the specific case of a vector, yielding a
O(MN logMN) time algorithm.



FFT

Huan

Introduction

Algorithms
Naive

FTT

Point-Value

Complex Roots

Iterative

NTT

Applications
Audio

2D Convolutions

Separable Kernels

FFT Algorithm

Conclusion

Sample
Problems

Past
Lectures

References

Runtime Analysis

How does this help us?
Well, recall the running time of O(MNHW ).
If we do two convolutions of a kernel of Hx1 and another
of 1xW , the running time will be
O(MNH +MNW ) = O(MN(H +W )).
This is a significant improvement as HW grows
quadratically while H +W grows linearly.
We can also use repeated 1D convolution to compute the
2D convolution for the specific case of a vector, yielding a
O(MN logMN) time algorithm.



FFT

Huan

Introduction

Algorithms
Naive

FTT

Point-Value

Complex Roots

Iterative

NTT

Applications
Audio

2D Convolutions

Separable Kernels

FFT Algorithm

Conclusion

Sample
Problems

Past
Lectures

References

Limits of Separability

However, clearly not every matrix is separable.
The conditions are quite strict, a matrix is separable if and
only if every pair of rows is a multiple of each other, put
another way, the matrix is made up of multiples of a
particular row vector.
As a consequence, the matrix is also made up of multiples
of a particular column vector.
These matrices are relatively rare, so there is utility in
deriving a more general algorithm.
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Reduction to 1D Convolution

The idea is to reduce 2D convolutions to 1D convolutions.

The observation is that if we flatten both matrices into a
1D list by reading from top to bottom, left to right, we can
just convolve in 1D and reconstruct the matrix afterwards.
We need to make sure both matrices are sufficiently
padded with zeros, such that the zeros force values in the
kernel to their proper rows in the image.
It turns out that we can just pad both matrices to the final
column size of the convolution, N +W − 1, flatten both,
convolve with the FFT, and then reshape the resulting list
to a matrix of proper size.
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Summary

1 Pad the rows of both matrices with zeros such that each
row has a width of N +W − 1

2 Flatten both by reading top to bottom, left to right
3 convolve the resulting lists in 1D
4 Reconstruct a 2D matrix, because we know its shape is

(M + H − 1)x(N +W − 1)
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The 2D Convolution Algorithm

Algorithm 2D Convolution Algorithm

def flatten(m: list, pad=0) -> list:
""" Flattens a matrix into a list. """
return [x for row in m for x in row + [0]*pad]

def reshape(l: list, m: int, n: int) -> list:
""" Shapes a list into a MxN matrix."""
return [[l[r*n + c] for c in range(n)]

for r in range(m)]

def conv(h: list, x: list):
""" Computes the 2D convolution. """
M, N, H, W = len(x), len(x[0]), len(h), len(h[0])
# need to pad the columns to the final size
h, x = flatten(h, N - 1), flatten(x, W - 1)
return reshape(fft(h, x), M + H - 1, N + W - 1)
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Trimming

In many computer vision applications, the kernel is a
square matrix of size KxK , where K is an odd number.

The middle value of the kernel is then placed over each
pixel of the image, yielding a transformed image of the
same dimensionality as the original.
We can simulate this by simply cutting off the first and last
K−1
2 rows and the same for the columns. This transforms

the resulting size from N + K − 1 to
N + K − 1− 2K−1

2 = N.
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Trimming

pruning
def prune(h: list, x: list) -> list:

""" Prunes a convolution for a KxK filter. """
m, k = conv(h, x), min(len(h), len(x))
pad = (k - 1)>>1
return [row[pad:-pad] for row in m[pad:-pad]]
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Runtime Analysis

The running time of the algorithm is going to be
O(MN logMN) = O(MN(logN + logM) = O(MN logN)
since we convolve a list of length M(N +W − 1), and we
assume N ≥ M >W .

This is not necessarily faster than the brute-force
algorithm; it depends on the kernel size.
For simplicity, suppose we have a NxN image and a KxK
kernel where N > K . Brute force yields O(N2K 2) while
the FFT algorithm yields O(N2 logN).
Thus, if logN < K 2, then the FFT is going to be faster.
For K > 5 that is a fair assumption since K 2 = 25, 225 is
several million. Obviously the FFT algorithm has a much
larger constant factor, but for a sufficiently large kernel the
time savings become greater and greater.
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Conclusion

The convolution, an operator very useful for signal, audio,
and image processing, can be efficiently computed with the
Fast Fourier Transform, or FFT.

If the data is integer, then floating-point arithmetic can be
avoided with the Number Theoretic Transform (NTT), a
variant of the FFT which uses modulo instead of complex
numbers, and calculates entirely in integers.
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Conclusion
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and image processing, can be efficiently computed with the
Fast Fourier Transform, or FFT.
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avoided with the Number Theoretic Transform (NTT), a
variant of the FFT which uses modulo instead of complex
numbers, and calculates entirely in integers.
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Conclusion

This lecture skips over the continuous case (what I’ve been
calling the Fast Fourier Transform is more mathematically
called the Discrete Fourier Transform, or DFT) but the
idea is essentially the same, summations turn into integrals.

It also skips over the mathematical interpretation of the
FFT, involving decomposing a function into a series of sine
and cosine waves.
This is useful for signal processing and audio analysis, but
requires a stronger mathematical background and to be
honest, I haven’t studied it at all myself. Fourier analysis
goes deeper than we need here.
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Conclusion

Introduction to Algorithms is definitely the most helpful source
on the FFT (from a computer science perspective), and more
thorough treatments of the FFT from an engineering or
mathematical standpoint are not hard to find.
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Sample Problems
Examples of problems using the FFT

1 SPOJ POLYMUL: Direct application of the FFT.

https://www.spoj.com/problems/POLYMUL/
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Sample Problems
Examples of problems using the FFT

2 SPOJ MUL: Given 1000 pairs of numbers, compute the
product of each pair; each number can have up to 10,000
digits.

https://www.spoj.com/problems/MUL/
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Sample Problems
Examples of problems using the FFT

2 Solution: Think of numbers as polynomials, where the
digits are coefficients and x is 10. Then, you can multiply
two numbers by multiplying the polynomials. However,
there is no guarantee that the coefficients of the resulting
polynomial are less than 10, so it is not a valid number. As
a last post-processing step, start from the smallest place
value and move your way to the largest, moving the digit
overflow from one place value to the next. Since you
iterate over the number of digits in the number, it takes
O(log n) which is dominated by the FFT.
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Sample Problems
Examples of problems using the FFT

2 An extension of this idea is the Schönhage–Strassen
algorithm, which disregards the requirement that the
intermediate numbers fit in a long, at the cost of being
O(n log n log log n). A more recent algorithm, by Harvey
and van der Hoeven, achieves O(n log n).

https://en.wikipedia.org/wiki/Sch%C3%B6nhage%E2%80%93Strassen_algorithm
https://hal.archives-ouvertes.fr/hal-02070778/document
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Sample Problems
Examples of problems using the FFT

3 SPOJ MAXMATCH: Given a string S of length N made up
of the characters “a”, “b”, and “c”, compute the maximum
self-matching, where a self-matching is defined as the
number of characters which match between S and S
shifted some nonzero number of characters.

https://www.spoj.com/problems/MAXMATCH/
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Sample Problems
Examples of problems using the FFT

3 Solution: For an offset i , the size of the overlap will be
N − i . So we just need to find the number of differences,
and subtract that from N − i to obtain the number of
matches. The easiest thing to do is to keep track of each
character separately, so to compute the differences for each
character. Suppose our character is “a”. We encode “a” as
a 0, and the other characters as a 1. We then find the `2

norm between this new list and this list with N 1’s added
to it (so that when we overlap, the non “a” characters
aren’t counted). This has the complication of counting
“a” ’s which are off the edge of the string, which we can
account for by simply keeping track of the number of “a” ’s
we have seen.
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Sample Problems
Examples of problems using the FFT

3 Given a[i ] as the number of mismatches with the character
“a” at a shift of i , and b[i ], c[i ], the number of matches is
N − i − a[i ]+b[i ]+c[i ]

2 . We divide by 2 because we count
each mismatch twice (once for each character in the pair).
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3 A much conceptually simpler algorithm is to encode “a”,
“b”, and “c” cleverly and then compute the matches in one
shot. If we encode “a” as (1, 0, 0), “b” as (0, 1, 0), and “c”
as (0, 0, 1), the FFT of the resulting list with its reverse
will give us the number of matches at each index because
the character representations dot each other will be 1 if
they are equal, and 0 if they are unequal. Thus, the FFT
will give us exactly the number of matches, but we need to
only look at every 3rd index since the other 2 are
byproducts of our transformation.
In practice, running one big FFT is faster than running 3
smaller FFTs.
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4 Codechef FARASA: Given an array, find the number of
distinct sums of a contiguous subarray.

https://www.codechef.com/problems/FARASA
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4 Solution: editorial.
Fair warning, time bounds are ridiculous.

https://discuss.codechef.com/t/farasa-editorial/2688
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5 Codeforces Round #296: Given two strings T ,S and an
error bound k , find all the positions where T occurs in S ,
where T “occurring” at some index i means that the jth
character of T has a corresponding character within k of
its position.

https://codeforces.com/contest/528/problem/D
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5 Solution: Honestly no clue but it has the “FFT” tag.
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6 String matching with wildcards: Given two binary strings
T , S , T has length N and has wildcards which match any
character in S , find all occurrences of T in S .

https://cs.stanford.edu/~rishig/courses/ref/l17.txt
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6 Solution: Encode 1 as 1 and 0 as -1. The dot product
between T and the slice that T overlaps with S will be be
N if they match exactly and less than N if they don’t
match exactly. To account for wildcards, encode a wildcard
as 0 and count the number of wildcards, C . Then, if they
match exactly it will be N − C , and less then that if they
don’t.
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6 This can be generalized to non-binary strings if you apply
the above algorithm to each character, setting that
character as 1 and not that character as -1. Sum over all
possible characters, and that will tell you whether there is a
mismatch somewhere (similar to SPOJ MAXMATCH).
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6 This idea can also be applied to string matching without
wildcards. Encode each character as its ASCII value in a
polynomial, and compute the `2-norm between T and S .
The `2 norm will be 0 if they match, and positive if they
don’t.
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7 3SUM: Given a list of integers between −N and N, find 3
numbers that add up to 0 (duplicates are allowed).

https://en.wikipedia.org/wiki/3SUM
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7 Solution: The basic idea will be to encode the list into a
length 2N polynomial p where the degree is an integer
value and the coefficient is whether that value appears in
the array. Compute p3 and read off the coefficient of x0.
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7 However, this doesn’t work if the degrees are negative. If
the most negative power of x in p is x−N , We can simply
multiply p by xN to make every power positive, making a
new polynomial p′. Then, after computing (p′)3, instead of
looking at the coefficient of x0, we can look at the
coefficient of x3N (accounting for the fact that p′ = xNp,
(p′)3 = x3Np3, p3 = (p′)3

x3N
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7 Alternative solution, if duplicates aren’t allowed: here (look
for “color coding”).

https://cs.stanford.edu/~rishig/courses/ref/l16.txt
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8 Anime Music Quiz: Guess which anime an intro/outro
comes from.

https://animemusicquiz.com/
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8 Solution: The Shazam algorithm.

https://www.toptal.com/algorithms/shazam-it-music-processing-fingerprinting-and-recognition
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Past Lectures
Past Lectures on similar topics

1 “Edge Detection”, (Alexey Didenkov, 2018)
2 “Fast Multiplication: Karatsuba and FFT” (Haoyuan Sun,

2016)
3 “Multiplying Polynomials”, (Haoyuan Sun, 2015)
4 “Fast Fourier Transform”, (Sreenath Are, 2013)

https://activities.tjhsst.edu/computervision/lectures/Edge_Detection.pdf
https://activities.tjhsst.edu/sct/lectures/1516/SCT_Polynomial.pdf
https://activities.tjhsst.edu/sct/lectures/1415/SCT_Multiplying_Polynomials.pdf
https://activities.tjhsst.edu/sct/lectures/1213/fft.pdf
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Resources that were useful when compiling this lecture

1 Introduction to Algorithms, chapter 30 (very helpful)
2 The number theoretic transform
3 µ-law algorithm
4 Picard’s Existence and Uniqueness Theorem
5 Separable convolutions

https://mitpress.mit.edu/books/introduction-algorithms-third-edition
https://www.nayuki.io/page/number-theoretic-transform-integer-dft
https://en.wikipedia.org/wiki/%CE%9C-law_algorithm
https://ptolemy.berkeley.edu/projects/embedded/eecsx44/lectures/Spring2013/Picard.pdf
https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728
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