Fast Fourier Transform and 2D Convolutions Doing convolutions fast

Stephen Huan ${ }^{1}$
${ }^{1}$ Thomas Jefferson High School for Science and Technology

TJ Vision \& Graphics Club, October 21, 2020

Table of Contents

1 Introduction

2 Algorithms

- Naive
- Fast Fourier Transform
- Point-Value Representation
- Complex Roots of Unity
- Iterative Variant
- Number Theoretic Transform

3 Applications of Convolutions

- Audio Processing
- 2D Convolutions
- Separable Kernels

■ FFT Algorithm
Sample Problems

Past
Lectures
References
4 Conclusion
5 Sample Problems
6 Past Lectures
7 References

Introduction

- The Fast Fourier Transform (FFT) is a common technique for signal processing and has many engineering applications. It also has a fairly deep mathematical basis, but we will ignore both those angles in favor of accessibility.
- Instead, we will approach the FFT from the most intuitive angle, polynomial multiplication.

Introduction

- The Fast Fourier Transform (FFT) is a common technique for signal processing and has many engineering applications. It also has a fairly deep mathematical basis, but we will ignore both those angles in favor of accessibility.
- Instead, we will approach the FFT from the most intuitive angle, polynomial multiplication.
First, we represent polynomials by a list of coefficients, where the number at index 0 represents the coefficient of x^{0}, the number at index 1 represents the coefficient of x^{1}, and so on.

Polynomial representation

The polynomial $3+2 x+4 x^{2}$ becomes $[3,2,4]$.

Definition of the Convolution

- The multiplication of two polynomials f and g is then simply each term of f multiplied with each term of g and then added up.
- We can also assume that f and g are the same length N, where the polynomial of lesser degree is padded with zeros.
- If we say the product is p, we can give an formula for an index in p in the following way:

Definition of the convolution

$$
p[n]=(f * g)[n]=\sum_{i=0}^{n} f[i] g[n-i]
$$

Intuition Behind a Convolution

- $p[n]$ is the coefficient of x^{n} in the product, and it is formed by adding up all the possible ways to get to x^{n}, i.e. $f[0] x^{0}$ times $g[n] x^{n}, f[1] x^{1}$ times $g[n-1] x^{n-1}$, etc.
- Intuitively, this "flips" g, and then the resulting product is computed by "sliding" g over f and then computing the dot product between the two lists, or a weighted average.

Multiplication as Convolution Example

- Suppose we have the polynomial $3+2 x+4 x^{2}=[3,2,4]$ and the polynomial $1+3 x+2 x^{2}=[1,3,2]$.

Multiplication as Convolution Example

■ Suppose we have the polynomial $3+2 x+4 x^{2}=[3,2,4]$ and the polynomial $1+3 x+2 x^{2}=[1,3,2]$.

- We first flip the second list to get $[2,3,1]$.

Multiplication as Convolution Example

FFT
Huan

Introduction
Algorithms

Naive

FTT
Point-Value
Complex Roots
Iterative
NTT
Applications

Audio

2D Convolutions
Separable Kernels FFT Algorithm
Conclusion

- Suppose we have the polynomial $3+2 x+4 x^{2}=[3,2,4]$ and the polynomial $1+3 x+2 x^{2}=[1,3,2]$.
- We first flip the second list to get $[2,3,1]$.

■ We then slide $[2,3,1]$ over $[3,2,4]$, imagining there are zeros such that the parts of $[2,3,1]$ that don't overlap with [3, 2, 4] aren't counted.

Multiplication as Convolution Example

■ Suppose we have the polynomial $3+2 x+4 x^{2}=[3,2,4]$ and the polynomial $1+3 x+2 x^{2}=[1,3,2]$.

- We first flip the second list to get $[2,3,1]$.

■ We then slide $[2,3,1]$ over $[3,2,4]$, imagining there are zeros such that the parts of $[2,3,1]$ that don't overlap with [3, 2, 4] aren't counted.

1 For the first value, 1 overlaps with 3 so we get 3 .

Multiplication as Convolution Example

■ Suppose we have the polynomial $3+2 x+4 x^{2}=[3,2,4]$ and the polynomial $1+3 x+2 x^{2}=[1,3,2]$.
■ We first flip the second list to get $[2,3,1]$.
■ We then slide $[2,3,1]$ over $[3,2,4]$, imagining there are zeros such that the parts of $[2,3,1]$ that don't overlap with [3, 2, 4] aren't counted.
1 For the first value, 1 overlaps with 3 so we get 3 .
2 Then, $[3,1]$ overlaps with $[3,2]$ so we get $3 \cdot 3+1 \cdot 2=11$.

Multiplication as Convolution Example

Multiplication as Convolution Example

Multiplication as Convolution Example

■ Suppose we have the polynomial $3+2 x+4 x^{2}=[3,2,4]$ and the polynomial $1+3 x+2 x^{2}=[1,3,2]$.

- We first flip the second list to get $[2,3,1]$.
- We then slide $[2,3,1]$ over $[3,2,4]$, imagining there are zeros such that the parts of $[2,3,1]$ that don't overlap with [3, 2, 4] aren't counted.
1 For the first value, 1 overlaps with 3 so we get 3 .
2 Then, $[3,1]$ overlaps with $[3,2]$ so we get $3 \cdot 3+1 \cdot 2=11$.
3 $[2,3,1]$ overlaps with $[3,2,4]=16$
$4[2,3]$ overlaps $[2,4]=16$,
5 and finally [2] overlaps with [4] to give 8.
Our final answer is then $[3,11,16,16,8]=$ $3+11 x+16 x^{2}+16 x^{3}+8 x^{4}=\left(3+2 x+4 x^{2}\right)\left(1+3 x+2 x^{2}\right)$.

Commutativity of the Convolution

What if we computed $g * f$? It should be the same since polynomial multiplication should be commutative.

```
Theorem
\(f * g=g * f\), i.e. polynomial multiplication is commutative.
```


Proof of the Commutativity of the Convolution

Proof.

We have $(f * g)(n)=\sum_{i=0}^{n} f[i] g[n-i]$ by definition. Perform the variable substitution $k=n-i$, so $i=n-k$. Summing from $\sum_{i=0}^{n}$ will sum from $k=n$ to $k=0$ in descending order, so $\sum_{i=0}^{n}=\sum_{k=0}^{n}$ (from the commutativity of addition).

$$
\begin{array}{rlrl}
(f * g)[n] & =\sum_{i=0}^{n} f[i] g[n-i] & & \text { Definition } \\
& =\sum_{k=0}^{n} f[n-k] g[k] & & \text { Substitution } \\
& =(g * f) &
\end{array}
$$

The Fast Fourier Transform

- This operation is known as a convolution, which is equivalent to polynomial multiplication in the discrete case and is denoted $f * g$.
- Its relevance to image processing will be expounded on later (for now, this puts the "convolutional" in "Convolutional Neural Networks").
■ Today's lecture is about the Fast Fourier Transform, an efficient algorithm to perform convolutions.

Table of Contents

FFT

Huan

Introduction
Algorithms
Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion
Sample
Problems
Past
Lectures
References

1 Introduction

2 Algorithms

- Naive
- Fast Fourier Transform
- Point-Value Representation
- Complex Roots of Unity
- Iterative Variant
- Number Theoretic Transform

13 Applications of Convolutions

- Audio Processing
- 2D Convolutions
- Separable Kernels
- FFT Algorithm

4 Conclusion
5 Sample Problems
6 Past Lectures
7 References

Naive

FFT
Huan

Introduction

- A naive approach to the convolution of two lists of length N, M will have runtime $O(N M)$ using the standard polynomial multiplication algorithm (each term of the first list multiplied with each term of the second list).

Naive

FFT
Huan

- A naive approach to the convolution of two lists of length N, M will have runtime $O(N M)$ using the standard polynomial multiplication algorithm (each term of the first list multiplied with each term of the second list).
- What will be the length of the resulting list?

Naive

FFT

Huan

- A naive approach to the convolution of two lists of length N, M will have runtime $O(N M)$ using the standard polynomial multiplication algorithm (each term of the first list multiplied with each term of the second list).
- What will be the length of the resulting list?
- The first list is a polynomial of degree $N-1$, the second of degree $M-1$, so the resulting polynomial has degree $(N-1)+(M-1)=N+M-2$.

Naive

- A naive approach to the convolution of two lists of length N, M will have runtime $O(N M)$ using the standard polynomial multiplication algorithm (each term of the first list multiplied with each term of the second list).
- What will be the length of the resulting list?
- The first list is a polynomial of degree $N-1$, the second of degree $M-1$, so the resulting polynomial has degree $(N-1)+(M-1)=N+M-2$.
■ A polynomial of degree D has $D+1$ coefficients, so the length of the product is $N+M-1$. Thus,

Naive

FFT

Huan

- A naive approach to the convolution of two lists of length N, M will have runtime $O(N M)$ using the standard polynomial multiplication algorithm (each term of the first list multiplied with each term of the second list).
- What will be the length of the resulting list?
- The first list is a polynomial of degree $N-1$, the second of degree $M-1$, so the resulting polynomial has degree $(N-1)+(M-1)=N+M-2$.
- A polynomial of degree D has $D+1$ coefficients, so the length of the product is $N+M-1$. Thus,

Lower bound for the runtime of a convolution

The length of the convolution is $N+M-1$, which is linear, so a better runtime than quadratic could exist.

Table of Contents

1 Introduction

2 Algorithms

- Naive

■ Fast Fourier Transform

- Point-Value Representation
- Complex Roots of Unity
- Iterative Variant
- Number Theoretic Transform

3 Applications of Convolutions

- Audio Processing
- 2D Convolutions
- Separable Kernels
- FFT Algorithm

Sample
Problems
Past
Lectures
References
4 Conclusion
5 Sample Problems
6 Past Lectures
7 References

Point-Value Representation

An alternative way to express a polynomial

- The key observation is that we can represent polynomials in a different form than a coefficient list.
■ In particular, we can use a point-value representation, or a list of (x, y) pairs that give an input and the corresponding output of a polynomial.

Point-value representation

A point-value representation for a polynomial p is a list of distinct x values and their corresponding y values, e.g. $\left\{\left(x_{0}, p\left(x_{0}\right)\right),\left(x_{1}, p\left(x_{1}\right)\right), \ldots,\left(x_{n}, p\left(x_{n}\right)\right)\right\}$

Moving between Representations

Evaluation

We call the process of going from a coefficient representation to a point-value representation evaluation, since we evaluate the polynomial at multiple points to get the point-value representation.

Moving between Representations

Evaluation

We call the process of going from a coefficient representation to a point-value representation evaluation, since we evaluate the polynomial at multiple points to get the point-value representation.

Interpolation

Likewise, we call the process of going from a point-value representation to a coefficient representation interpolation, since we are finding a polynomial which "fits" the data.

Moving between Representations

Evaluation

We call the process of going from a coefficient representation to a point-value representation evaluation, since we evaluate the polynomial at multiple points to get the point-value representation.

Interpolation

Likewise, we call the process of going from a point-value representation to a coefficient representation interpolation, since we are finding a polynomial which "fits" the data.

- Suppose we have a polynomial of degree n.
- We then need a certain number of points for evaluation and interpolation to be well-defined.

Well-defined Representations

FFT

Huan

Introduction

- Evaluation is always well-defined, because we can always evaluate a polynomial of any degree or coefficient representation.
■ However, if we don't have enough points, interpolation is not necessarily possible.

Well-defined Representations

- Evaluation is always well-defined, because we can always evaluate a polynomial of any degree or coefficient representation.
■ However, if we don't have enough points, interpolation is not necessarily possible.

III-defined representation

Consider the point-value representation $[(0,0),(1,1)]$ and a degree of 2 . This could be the polynomial x^{2} or $2 x^{2}-x$.

Well-defined Representations

FFT

Huan

- Evaluation is always well-defined, because we can always evaluate a polynomial of any degree or coefficient representation.
■ However, if we don't have enough points, interpolation is not necessarily possible.

III-defined representation

Consider the point-value representation $[(0,0),(1,1)]$ and a degree of 2 . This could be the polynomial x^{2} or $2 x^{2}-x$.

- So for a polynomial of degree n, we need at least $n+1$ distinct points (since each point gives another linear equation constraining the $n+1$ polynomial coefficients).
- We can in fact prove that if we have $n+1$ points, that uniquely determines a polynomial of degree n.

Proof of the Point-Value Representation

FFT

Huan

Introduction

Algorithms
Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Corvolutions
Separable Kernels
FFT Algorithm
Conclusion
Sample

Problems

Past

Lectures

Theorem

A point-value representation with n distinct points uniquely determines a polynomial of degree $n-1$.

Proof.

We have a polynomial of the form
$p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}$ and n points of the form $\left(x_{i}, y_{i}\right)$ such that $p\left(x_{i}\right)=y_{i}$. Those constraints determine the following matrix equation:

$$
\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n-1} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n-1} & x_{n-1}^{2} & \cdots & x_{n-1}^{n-1}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n-1}
\end{array}\right]
$$

Proof of the Point-Value Representation

Proof.

The leftmost matrix is known as the Vandermonde matrix, denoted $V\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ which has the following determinant (left as an exercise for the reader):

$$
\prod_{0 \leq j<i \leq n-1}\left(x_{i}-x_{j}\right)
$$

A matrix is invertible if and only if its determinant is nonzero, so this matrix is invertible if each x_{i} is distinct. Thus, we can solve for the coefficients by multiplying by the inverse, so $\vec{a}=V^{-1} \vec{y}$, and this solution is unique since an invertible matrix is a bijective transformation between a vector space and itself.

Lagrange's Formula

- This proof directly gave an easy construction of the interpolating polynomial, by $V^{-1} \vec{y}$.
- Matrix inverses can be computed in $O\left(n^{3}\right)$ as an easy upper bound, but that can be improved with Lagrange's interpolating formula to yield a $O\left(n^{2}\right)$ time algorithm.
- I will not elaborate on Lagrange's formula in this lecture, but a good Wikipedia page is available here.

Evaluation

■ If we have a list of N coefficients, then the polynomial is of degree $N-1$ and thus we need N distinct points.

- We first figure out how to evaluate a polynomial at a single point, and will repeat the process for all the points.

Evaluating a Polynomial

- Suppose we have a polynomial of the form

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} .
$$

■ If we evaluate at a particular x_{0}, we compute each $a_{i} x_{0}{ }^{i}$ term, of which there are N.

- This would take $O\left(N^{2}\right)$ time with repeated multiplication and $O(N \log N)$ time with fast exponentiation.

Horner's Rule

- But we can do better with Horner's rule.
- We notice that the degree in coefficient form is monotonically increasing, so we can successively factor out a multiplication by x.

Horner's rule

$$
p(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+\cdots+x\left(a_{n-2}+x a_{n-1}\right)\right)\right)
$$

Horner's Rule

- But we can do better with Horner's rule.
- We notice that the degree in coefficient form is monotonically increasing, so we can successively factor out a multiplication by x.

Horner's rule

$$
p(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+\cdots+x\left(a_{n-2}+x a_{n-1}\right)\right)\right)
$$

- We do exactly $N-1$ multiplications and additions, so the algorithm runs in $O(N)$.
- Evaluating a polynomial at N points then takes $O(N \cdot N)=O\left(N^{2}\right)$ time.

Summary

- So we can do both evaluation and interpolation in $O\left(n^{2}\right)$

Multiplying in Linear Time

■ Suppose we have polynomials f, g in coefficient form.

- We also assume that the polynomials are evaluated at the same points, so we have
or the element-wise multiplication of the two lists.

This can be easily computed in $O(n)$!

Overall Framework

So our algorithm for polynomial multiplication is as follows:
1 Evaluate a coefficient representation into a point-value representation.

Overall Framework

So our algorithm for polynomial multiplication is as follows:
1 Evaluate a coefficient representation into a point-value representation.
2 Multiply the two point-value representations in linear time.

Overall Framework

So our algorithm for polynomial multiplication is as follows:
1 Evaluate a coefficient representation into a point-value representation.
2 Multiply the two point-value representations in linear time.
3 Interpolate the resulting point-value representation back to coefficients.

Need for Picking Special Points

- The speed of this algorithm is contingent on our ability to quickly evaluate and interpolate a polynomial.
- Currently, with our $O\left(n^{2}\right)$ time evaluation and interpolation algorithms, we match the $O\left(n^{2}\right)$ naive algorithm.
- However, under this framework, we can improve the time if we pick our points cleverly rather than arbitrarily.

Complex Roots of Unity

Introduction

Our special points are going to be complex roots of unity, or roots of 1 that are allowed to have an imaginary component.

Complex roots of unity

The second root of 1 can be 1 or -1 (taking "second root" to mean anything which squared is 1). The fourth root of 1 can be $1,-1, i$, or $-i$. (since $i^{4}=\left(i^{2}\right)^{2}=(-1)^{2}=1$).

Computing Complex Roots

FFT

Huan

Introduction

Algorithms
Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion
Sample
Problems
Past
Lectures
References

To easily compute these roots, we can rewrite 1 using

Euler's formula

$e^{i x}=\cos x+i \sin x$ (a proof of this appears in the appendix).

Computing Complex Roots

FFT

Huan

Introduction

Algorithms
Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion
Sample
Problems
Past
Lectures
References

To easily compute these roots, we can rewrite 1 using

Euler's formula

$e^{i x}=\cos x+i \sin x$ (a proof of this appears in the appendix).

$$
e^{2 \pi i}=\cos 2 \pi+i \sin 2 \pi=1
$$

Computing Complex Roots

$e^{i x}=\cos x+i \sin x$ (a proof of this appears in the appendix).
To easily compute these roots, we can rewrite 1 using

Euler's formula

$$
e^{2 \pi i}=\cos 2 \pi+i \sin 2 \pi=1
$$

So we can take a nth root by simply raising

$$
\sqrt[n]{1}=\left(e^{2 \pi i}\right)^{\frac{1}{n}}
$$

so a root is

$$
e^{\frac{2 \pi i}{n}}
$$

Properties of Complex Roots

- However, note that we can rewrite 1 in many different ways since sine and cosine are periodic.

FTT

Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion
Sample
Problems
Past
Lectures

Properties of Complex Roots

■ However, note that we can rewrite 1 in many different ways since sine and cosine are periodic.
■ Since adding 2π doesn't change the value of sine and cosine, 1 is also equal to $e^{4 \pi i}, e^{6 \pi i}$, and so on.

Properties of Complex Roots

- However, note that we can rewrite 1 in many different ways since sine and cosine are periodic.
■ Since adding 2π doesn't change the value of sine and cosine, 1 is also equal to $e^{4 \pi i}, e^{6 \pi i}$, and so on.
- In general, $e^{2 \pi k i}$ is equal to 1 for any integer k, so if we take the nth root, $e^{\frac{2 \pi k i}{n}}$ is also going to be a valid root.

Properties of Complex Roots

■ However, note that we can rewrite 1 in many different ways since sine and cosine are periodic.
■ Since adding 2π doesn't change the value of sine and cosine, 1 is also equal to $e^{4 \pi i}, e^{6 \pi i}$, and so on.

- In general, $e^{2 \pi k i}$ is equal to 1 for any integer k, so if we take the nth root, $e^{\frac{2 \pi k i}{n}}$ is also going to be a valid root.
■ However, not every k gives a distinct root of unity. $k=n+1$ is equivalent to $k=1$ since

$$
\cos \left(\frac{2 \pi(n+1)}{n}\right)=\cos \left(2 \pi+\frac{2 \pi}{n}\right)=\cos \left(\frac{2 \pi}{n}\right)
$$

Properties of Complex Roots

■ This generalizes such that an power k equivalent to j mod n will have the same root.

Principle Root of Unity

We can easily keep track of the n distinct nth roots of unity by writing them as powers of the principle root of unity.

Principle Root of Unity

The principle root of unity is the root of unity when $k=1$.

Principle Root of Unity

Notation

We will denote this principle root as ω_{n}, where $\omega_{n}=e^{\frac{2 \pi i}{n}}$.

Principle Root of Unity

Notation

We will denote this principle root as ω_{n}, where $\omega_{n}=e^{\frac{2 \pi i}{n}}$.
Since we picked $k=1$, we can represent every nth root of unity as a power of this root of unity since

$$
e^{\frac{2 \pi k i}{n}}=\left(e^{\frac{2 \pi i}{n}}\right)^{k}=\omega_{n}^{k}
$$

Properties of a Principle Root

FFT
Huan

Introduction

Algorithms

Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion

Problems

Past

Lectures

- Note that every power of the principle root of unity is itself a root of unity, because

$$
\left(\omega_{n}^{k}\right)^{n}=\left(\omega_{n}^{n}\right)^{k}=1^{k}=1
$$

Properties of a Principle Root

- Note that every power of the principle root of unity is itself a root of unity, because

$$
\left(\omega_{n}^{k}\right)^{n}=\left(\omega_{n}^{n}\right)^{k}=1^{k}=1
$$

- We now come to an observation that will be instrumental in developing the FFT - that the square of a nth principle root of unity is a $\frac{n}{2}$ th principle root of unity.
- This follows nearly from definition:

$$
\begin{aligned}
\omega_{n}^{2} & =\left(e^{\frac{2 \pi i}{n}}\right)^{2} \\
& =e^{\frac{4 \pi i}{n}}
\end{aligned}
$$

$$
=e^{\frac{2 \pi i}{2}}
$$

$$
=\omega_{\frac{n}{2}}
$$

Setting up a Recurrence Relation

■ We now show that evaluating a polynomial at n distinct nth roots of unity can be written as a recurrence relation.

- First, cleverly rewrite a polynomial into two parts.

Splitting a Polynomial

FFT

Huan

Introduction

Algorithms

Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion
Sample

Problems

Past
Lectures

- Suppose we have the polynomial

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}
$$

■ We divide the coefficient list of p into two parts, one with even powers and the other with odd powers, the left and right halves respectively.

Splitting a Polynomial

FFT

Huan

Introduction

- Suppose we have the polynomial

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}
$$

- We divide the coefficient list of p into two parts, one with even powers and the other with odd powers, the left and right halves respectively.
■ We assume that n is a power of 2 so that p can always be divided in such a manner.
- If n isn't, we can always pad with 0 's.

Splitting a Polynomial

FFT

Huan

- Suppose we have the polynomial

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}
$$

■ We divide the coefficient list of p into two parts, one with even powers and the other with odd powers, the left and right halves respectively.
■ We assume that n is a power of 2 so that p can always be divided in such a manner.

- If n isn't, we can always pad with 0 's.

$$
\begin{align*}
p(x) & =a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} \tag{1}\\
L(x) & =a_{0}+a_{2} x+a_{4} x^{2}+\ldots \tag{2}\\
R(x) & =a_{1}+a_{3} x+a_{5} x^{2}+\ldots \tag{3}
\end{align*}
$$

It follows that p can be written in terms of L and R :

$$
\begin{equation*}
p(x)=L\left(x^{2}\right)+x R\left(x^{2}\right) \tag{4}
\end{equation*}
$$

Recurrence Relation

FFT

Huan

Introduction

■ Recall that we are trying to evaluate p at n roots of unity.

Algorithms
Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels FFT Algorithm
Conclusion
Sample
Problems
Past
Lectures
References

Recurrence Relation

Introduction

- Recall that we are trying to evaluate p at n roots of unity.
- Suppose we have a function that takes as input a list of coefficients and returns the evaluation at n roots of unity.

Recurrence Relation

■ Recall that we are trying to evaluate p at n roots of unity.

- Suppose we have a function that takes as input a list of coefficients and returns the evaluation at n roots of unity.
- We can define this function in terms of itself, because we have a recurrence relation - divide the list in two, giving us L evaluated at $\frac{n}{2}$ th roots of unity and the same for R (from the fact that a nth root of unity squared is a $\frac{n}{2}$ th root of unity).

Recurrence Relation

- Recall that we are trying to evaluate p at n roots of unity.
- Suppose we have a function that takes as input a list of coefficients and returns the evaluation at n roots of unity.
- We can define this function in terms of itself, because we have a recurrence relation - divide the list in two, giving us L evaluated at $\frac{n}{2}$ th roots of unity and the same for R (from the fact that a nth root of unity squared is a $\frac{n}{2}$ th root of unity).
- Finally, we can reconstruct p from L, R according to (4).

Accounting for Edge Cases

This works directly for ω_{n}^{0} to $\omega_{n}^{\frac{n}{2}-1}$, however for a power greater than $\frac{n}{2}-1$, we need to put it in terms of a power less than $\frac{n}{2}$ (since L and R are only $\frac{n}{2}$ long).

Derivation of Negative Property

FFT

Huan

Introduction

Algorithms

Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels
FFT Algorithm
Luckily,

Conclusion

$$
\begin{aligned}
\omega_{n}^{k+\frac{n}{2}} & =\cos \left(2 \pi \frac{k+\frac{n}{2}}{n}\right)+i \sin \left(2 \pi \frac{k+\frac{n}{2}}{n}\right) \\
& =\cos \left(\frac{2 \pi k}{n}+\pi\right)+i \sin \left(\frac{2 \pi k}{n}+\pi\right) \\
& =-\omega_{n}^{k}
\end{aligned}
$$

Putting it All Together

FFT
Huan

Introduction

Algorithms

Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion

Problems

Past
Lectures

So, for some power k of the base root of unity we can compute

$$
p\left(\omega_{n}^{k}\right)=L\left(\omega_{n}^{2 k}\right)+\omega_{n}^{k} R\left(\omega_{n}^{2 k}\right)
$$

and, using the negative property just derived,

$$
p\left(\omega_{n}^{k+\frac{n}{2}}\right)=L\left(\omega_{n}^{2 k}\right)-\omega_{n}^{k} R\left(\omega_{n}^{2 k}\right)
$$

Base Case

FFT \quad - We compute L and R recursively, and we're done!

Introduction

Algorithms
Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion
Sample
Problems
Past
Lectures

Base Case

FFT
Huan

- We compute L and R recursively, and we're done!

■ However, we need to have a base case.

Base Case

FFT

Huan

■ We compute L and R recursively, and we're done!

- However, we need to have a base case.
- Recall our function takes in a coefficient list of length n representing a polynomial, and returns the evaluation of that polynomial at each of the n distinct nth roots of unity.

Base Case

■ We compute L and R recursively, and we're done!
■ However, we need to have a base case.

- Recall our function takes in a coefficient list of length n representing a polynomial, and returns the evaluation of that polynomial at each of the n distinct nth roots of unity.
■ The simplest base case is just $n=1$, at which point we can stop dividing the list in half and evaluate directly.

Base Case

■ We compute L and R recursively, and we're done!
■ However, we need to have a base case.

- Recall our function takes in a coefficient list of length n representing a polynomial, and returns the evaluation of that polynomial at each of the n distinct nth roots of unity.
■ The simplest base case is just $n=1$, at which point we can stop dividing the list in half and evaluate directly.
- The only 1 st root of unity is 1 , and evaluating a polynomial at $x=1$ is equal the sum of the coefficients, which for a polynomial with one coefficient is just its singular coefficient.

Base Case

■ We compute L and R recursively, and we're done!
■ However, we need to have a base case.

- Recall our function takes in a coefficient list of length n representing a polynomial, and returns the evaluation of that polynomial at each of the n distinct nth roots of unity.
■ The simplest base case is just $n=1$, at which point we can stop dividing the list in half and evaluate directly.
■ The only 1st root of unity is 1 , and evaluating a polynomial at $x=1$ is equal the sum of the coefficients, which for a polynomial with one coefficient is just its singular coefficient.

Base case

Thus, we can just return the coefficient list of the polynomial, or the input to the function when $n=1$.

Analysis of Runtime

■ This algorithm has the same recursion as merge sort.

Naive

FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion
Sample
Problems
Past
Lectures

Analysis of Runtime

- This algorithm has the same recursion as merge sort.

■ At every level of the recursion, we divide the list in half, making the depth of the recursive tree $\log n$.

Analysis of Runtime

- This algorithm has the same recursion as merge sort.

■ At every level of the recursion, we divide the list in half, making the depth of the recursive tree $\log n$.

- At a particular level k, we have 2^{k} nodes, and each node has a list of length $\frac{n}{2^{k}}$, so the total cost of merging the lists together on that level is $2^{k} \frac{n}{2^{k}}=n$.

Analysis of Runtime

- This algorithm has the same recursion as merge sort.

■ At every level of the recursion, we divide the list in half, making the depth of the recursive tree $\log n$.

- At a particular level k, we have 2^{k} nodes, and each node has a list of length $\frac{n}{2^{k}}$, so the total cost of merging the lists together on that level is $2^{k} \frac{n}{2^{k}}=n$.
- Thus, $O(\log n \cdot n)=O(n \log n)$.
- So we can evaluate a polynomial at n roots of unity in $O(n \log n)$ with the above algorithm, called the FFT.

Complex Roots

Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion
Sample
Problems
Past
Lectures

- So we can evaluate a polynomial at n roots of unity in $O(n \log n)$ with the above algorithm, called the FFT.
- If we want to multiply two polynomials f and g, we can compute $\mathrm{FFT}(f) \circ \mathrm{FFT}(g)$, where \circ is the element-wise multiplication of the outputs in the point-value representations.

Inverse FFT

- How do we interpolate coefficients from this point-value representation to complete our convolution?

Inverse FFT

- How do we interpolate coefficients from this point-value representation to complete our convolution?
- We need the inverse FFT, which luckily can be written in terms of the FFT. Recall that the FFT essentially computes the multiplication of the Vandermonde matrix with the coefficients to get to the outputs, e.g. $V \vec{a}=\vec{y}$.

Inverse FFT

■ How do we interpolate coefficients from this point-value representation to complete our convolution?
■ We need the inverse FFT, which luckily can be written in terms of the FFT. Recall that the FFT essentially computes the multiplication of the Vandermonde matrix with the coefficients to get to the outputs, e.g. $V \vec{a}=\vec{y}$.

- To go from the outputs to the coefficients, we can simply multiply by V^{-1}, i.e. $\vec{a}=V^{-1} \vec{y}$.

Inverse FFT

- Computing V^{-1} is tedious and I don't have much insight (read Introduction to Algorithms for a proper proof), but it essentially involves just the definition of matrix inverse and more properties of roots of unity.

Inverse FFT

- Computing V^{-1} is tedious and I don't have much insight (read Introduction to Algorithms for a proper proof), but it essentially involves just the definition of matrix inverse and more properties of roots of unity.
- It turns out that V^{-1} is essentially V but evaluated at x^{-1} instead of x. Also, divide by n.

Inverse FFT

- Computing V^{-1} is tedious and I don't have much insight (read Introduction to Algorithms for a proper proof), but it essentially involves just the definition of matrix inverse and more properties of roots of unity.
- It turns out that V^{-1} is essentially V but evaluated at x^{-1} instead of x. Also, divide by n.
■ So we can just use the FFT but take the inverse of the root of unity, and divide each element by n at the end.

Inverse FFT

- Computing V^{-1} is tedious and I don't have much insight (read Introduction to Algorithms for a proper proof), but it essentially involves just the definition of matrix inverse and more properties of roots of unity.
- It turns out that V^{-1} is essentially V but evaluated at x^{-1} instead of x. Also, divide by n.
■ So we can just use the FFT but take the inverse of the root of unity, and divide each element by n at the end.
- Finally, we arrive at the FFT formulation of convolutions.

Convolution Theorem

Theorem

$f * g=F F T^{-1}(F F T(f) \circ F F T(g))$, i.e. convolutions can be done with FFTs in time $O(n \log n)$.

Proof.

Follows from the presentation up to this point.
A concrete implementation can be found here.

Iterative FFT

- The recursive algorithm can be made iterative surprisingly elegantly from a pattern in binary form of the indexes when recursively subdividing.

Iterative FFT

- The recursive algorithm can be made iterative surprisingly elegantly from a pattern in binary form of the indexes when recursively subdividing.
■ I omit the details here, although it makes the algorithm $O(n)$ in memory instead of $O(n \log n)$ and will likely run faster than the recursive algorithm.

Iterative FFT

- The recursive algorithm can be made iterative surprisingly elegantly from a pattern in binary form of the indexes when recursively subdividing.
■ I omit the details here, although it makes the algorithm $O(n)$ in memory instead of $O(n \log n)$ and will likely run faster than the recursive algorithm.
- An implementation is above.

Number Theoretic Transform (NTT)

- Another improvement on the FFT comes from the observation that complex roots of unity were an arbitrary pick, any field with sufficient properties will do.

Number Theoretic Transform (NTT)

- Another improvement on the FFT comes from the observation that complex roots of unity were an arbitrary pick, any field with sufficient properties will do.
■ In particular, we can pick a large prime number p and find an equivalent to a root of unity under the field modulo p.

Uses of the NTT

The details are incredibly tedious and number theory heavy, but they yield the number theoretic transform, a variant of the FFT which operates on integers.

Use cases of the NTT

The NTT is useful for polynomials of integer coefficients or certain types of data, e.g. music or images, which have integer pixel values.

Accounting for Negative Numbers

Table of Contents

FFT

Huan

Introduction

Algorithms
Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions Separable Kernels FFT Algorithm

Conclusion
Sample
Problems

Past

Lectures
References

1 Introduction
2 Algorithms

- Naive
- Fast Fourier Transform
- Point-Value Representation
- Complex Roots of Unity
- Iterative Variant
- Number Theoretic Transform

3 Applications of Convolutions

- Audio Processing
- 2D Convolutions
- Separable Kernels
- FFT Algorithm

4 Conclusion
5 Sample Problems
6 Past Lectures
7 References

The Anime Music Quiz Problem

Audio

2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion

Problems

Past

Before we apply 2D convolutions to images, we elucidate the 1D convolution and its usefulness through an illustrative example.

The anime music quiz problem.
We have a song that is 1 minute and 30 seconds long, and a 10 second clip from that song. We wish to compute:

The Anime Music Quiz Problem

Before we apply 2D convolutions to images, we elucidate the 1D convolution and its usefulness through an illustrative example.

The anime music quiz problem.
We have a song that is 1 minute and 30 seconds long, and a 10 second clip from that song. We wish to compute:

1 Out of a list of songs, which song the clip came from.

The Anime Music Quiz Problem

Before we apply 2D convolutions to images, we elucidate the 1D convolution and its usefulness through an illustrative example.

The anime music quiz problem.

We have a song that is 1 minute and 30 seconds long, and a 10 second clip from that song. We wish to compute:
1 Out of a list of songs, which song the clip came from.
2 From a known song, the timestamp where the clip occurred.

Example Run

Point-Value

Audio

2D Convolutions
Separable Kernels FFT Algorithm

Conclusion
Sample
Problems

Past

Lectures
References

```
(amq) stephenhuan@MacBook-Pro ~/P/p/p/amq (master o)> python db.py clip
Picking a clip from NeonGenesisEvangelion at -4.04dB
```

(a) Generating a clip from an anime intro.

NekomonogatariKuro-0P1 NeonGenesisEvangelion Nichijou_op2 Nisemonogatari_op1
: 4590137
: 3931757
: 8316782
: 4663729
loss; occurs at 3.4
loss, occurs at 35.2 loss, occurs at 42.4
loss, occurs at 42.4 seconds
loss, occurs at 77.3 second:
second!-
Final answer: Neon Genesis Evangelion 123 songs in 8.61 seconds $=14.29$ songs per second
(b) Comparison between songs; finds that it occurs exactly 35.2 seconds into the song.
(c) Song with the lowest loss.

Figure: An example run of the system.

Audio Information

FFT

Huan

Introduction

■ First, some basics about the representation of audio data.

Audio Information

- First, some basics about the representation of audio data.

■ We will use the mp3 file format at a sample rate of 48 kHz .

Audio Information

- First, some basics about the representation of audio data.

■ We will use the mp3 file format at a sample rate of 48 kHz .

- Audio is fundamentally just a list of numbers, where each number represents the amplitude of the sound wave at that time. A 48 kHz sample rate means there are 48,000 of these measurements per second.

Audio Information

■ First, some basics about the representation of audio data.
■ We will use the mp3 file format at a sample rate of 48 kHz .

- Audio is fundamentally just a list of numbers, where each number represents the amplitude of the sound wave at that time. A 48 kHz sample rate means there are 48,000 of these measurements per second.
■ Each number is a 16 -bit float in the range $[0,1)$, which we change into an integer in $\left[0,2^{16}\right)$ for the NTT.

Modeling the Problem

FFT

■ So we have two lists of integers, and now wish to find where the smaller list "fits" into the larger list the best.

Modeling the Problem

■ So we have two lists of integers, and now wish to find where the smaller list "fits" into the larger list the best.
■ One way to do this is to compute the ℓ^{2} norm, or the vector difference between the two lists.

Modeling the Problem

■ So we have two lists of integers, and now wish to find where the smaller list "fits" into the larger list the best.

- One way to do this is to compute the ℓ^{2} norm, or the vector difference between the two lists.
- So we slide the smaller list over the larger list, computing the sum of squares error as we go.
- This seems very similar to the convolution, except we calculate the sum of squares instead of the dot product.
- We also need to flip one of the lists because the convolution flips a list.

Turning Sum of Squares into Convolutions

- How do we reduce sum of squares to a dot product?

Introduction

Algorithms
Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion
Sample
Problems
Past
Lectures

Turning Sum of Squares into Convolutions

Huan

- How do we reduce sum of squares to a dot product?

■ We notice that for elements of the lists a, b

Introduction

Algorithms

Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion

$$
\left(a_{i}-b_{j}\right)^{2}=a_{i}^{2}-2 a_{i} b_{j}+b_{j}^{2}
$$

Turning Sum of Squares into Convolutions

- How do we reduce sum of squares to a dot product?

■ We notice that for elements of the lists a, b

$$
\left(a_{i}-b_{j}\right)^{2}=a_{i}^{2}-2 a_{i} b_{j}+b_{j}^{2}
$$

■ When we sum over the length of a, assuming a is the smaller list, we get:

$$
\|a\|^{2}-2 a \cdot b^{\prime}+\left\|b^{\prime}\right\|^{2}
$$

where b^{\prime} is the slice that a overlaps.

Turning Sum of Squares into Convolutions

- How do we reduce sum of squares to a dot product?
- We notice that for elements of the lists a, b

$$
\left(a_{i}-b_{j}\right)^{2}=a_{i}^{2}-2 a_{i} b_{j}+b_{j}^{2}
$$

■ When we sum over the length of a, assuming a is the smaller list, we get:

$$
\|a\|^{2}-2 a \cdot b^{\prime}+\left\|b^{\prime}\right\|^{2}
$$

where b^{\prime} is the slice that a overlaps.

- \|a\| is a constant, so it can be ignored. Thus, we only need to compute $a \cdot b^{\prime}$ and $\left\|b^{\prime}\right\|^{2}$.

Turning Sum of Squares into Convolutions

- How do we reduce sum of squares to a dot product?
- We notice that for elements of the lists a, b

$$
\left(a_{i}-b_{j}\right)^{2}=a_{i}^{2}-2 a_{i} b_{j}+b_{j}^{2}
$$

■ When we sum over the length of a, assuming a is the smaller list, we get:

$$
\|a\|^{2}-2 a \cdot b^{\prime}+\left\|b^{\prime}\right\|^{2}
$$

where b^{\prime} is the slice that a overlaps.

- \|a\| is a constant, so it can be ignored. Thus, we only need to compute $a \cdot b^{\prime}$ and $\left\|b^{\prime}\right\|^{2}$.
- $a \cdot b^{\prime}$ directly follows from a convolution and can be read from $a * b^{r}$, where b^{r} is the reverse of b.

Turning Sum of Squares into Convolutions

- Lastly, we can compute $\left\|b^{\prime}\right\|^{2}$ with two-pointer logic.
- First, compute the very first value of $\left\|b^{\prime}\right\|^{2}$ as usual.
- If we make sure to scan from left to right, then only two things change in b^{\prime} : it loses a value from the left and it gains a new value from the right.
- We can account for this in $\left\|b^{\prime}\right\|^{2}$ by subtracting out the left value squared and adding in the right value squared.

Minimum ℓ^{2}

Algorithm minimum ℓ^{2} between two lists

```
    def min_offset(a: list, b: list) -> tuple:
    N,M}=\operatorname{len}(a),len(b
    p = fft(a[::-1], b)[N - 1:]
    x2, xy, y2 = sum(x*x for x in a), p[0], \
        sum(b[i]*b[i] for i in range(N))
    best, 12 = 0, -2*xy + y2
    for i in range(1, M - N + 1):
        y2 += b[N - 1 + i] %b[N - 1 + i] - b[i - 1]*b[i - 1]
        xy = p[i]
        d = -2*xy + y2
        if d< l2:
            best, l2 = i, d
    return best, x2 + l2
```

Past
Lectures

NTT Considerations

Huan

- We need to be careful about a few things. If we don't pick p for the NTT large enough, then it won't work.

Introduction

Algorithms

Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion

NTT Considerations

- We need to be careful about a few things. If we don't pick p for the NTT large enough, then it won't work.
- If m is the largest number in a list and n is the length of the list, then we need p to be bigger than $m^{2} n$, the largest a single element can become.

NTT Considerations

■ We need to be careful about a few things. If we don't pick p for the NTT large enough, then it won't work.
■ If m is the largest number in a list and n is the length of the list, then we need p to be bigger than $m^{2} n$, the largest a single element can become.

- n is $90 \cdot 48,000 \approx 4 \cdot 10^{6}$ and m is 2^{16}.

NTT Considerations

- We need to be careful about a few things. If we don't pick p for the NTT large enough, then it won't work.
- If m is the largest number in a list and n is the length of the list, then we need p to be bigger than $m^{2} n$, the largest a single element can become.
- n is $90 \cdot 48,000 \approx 4 \cdot 10^{6}$ and m is 2^{16}.
- $m^{2} n=2^{32} \cdot 4 \cdot 10^{6} \approx 2^{54}$.

NTT Considerations

- We need to be careful about a few things. If we don't pick p for the NTT large enough, then it won't work.
- If m is the largest number in a list and n is the length of the list, then we need p to be bigger than $m^{2} n$, the largest a single element can become.
- n is $90 \cdot 48,000 \approx 4 \cdot 10^{6}$ and m is 2^{16}.

■ $m^{2} n=2^{32} \cdot 4 \cdot 10^{6} \approx 2^{54}$.

- This seems fine since 2^{54} will fit in a long, but this won't work since we need to compute x^{2} as part of the FFT, and $\left(2^{54}\right)^{2}$ will definitely overflow.

NTT Considerations

- We need to be careful about a few things. If we don't pick

■ If m is the largest number in a list and n is the length of p for the NTT large enough, then it won't work. the list, then we need p to be bigger than $m^{2} n$, the largest a single element can become.

- n is $90 \cdot 48,000 \approx 4 \cdot 10^{6}$ and m is 2^{16}.

■ $m^{2} n=2^{32} \cdot 4 \cdot 10^{6} \approx 2^{54}$.

- This seems fine since 2^{54} will fit in a long, but this won't work since we need to compute x^{2} as part of the FFT, and $\left(2^{54}\right)^{2}$ will definitely overflow.
■ We could get around this overflow by doing modulo multiplication instead of standard multiplication, but that would introduce a log factor, making the algorithm $64 x$ slower, an unacceptable slowdown.

μ-law Companding Algorithm

- One trick is to reduce the bitrate of the mp3 at the expense of audio quality, going from 16 -bit audio to 8 -bit audio.

μ-law Companding Algorithm

■ One trick is to reduce the bitrate of the mp3 at the expense of audio quality, going from 16 -bit audio to 8 -bit audio.

- A naive way to do it would be to multiply the real number by 2^{8} and round, but a better way is the μ-law algorithm, a trick that preserves frequencies closer to the human voice.

μ-law Companding Algorithm

- One trick is to reduce the bitrate of the mp3 at the expense of audio quality, going from 16 -bit audio to 8 -bit audio.
■ A naive way to do it would be to multiply the real number by 2^{8} and round, but a better way is the μ-law algorithm, a trick that preserves frequencies closer to the human voice.
- A comparison between scaling and the μ-law is shown here.

μ-law Companding Algorithm

■ One trick is to reduce the bitrate of the mp3 at the expense of audio quality, going from 16 -bit audio to 8 -bit audio.
■ A naive way to do it would be to multiply the real number by 2^{8} and round, but a better way is the μ-law algorithm, a trick that preserves frequencies closer to the human voice.

- A comparison between scaling and the μ-law is shown here.
- With 8-bit audio, $m^{2} n=2^{16} \cdot 4 \cdot 10^{6} \approx 2^{38}$. This goes over the limit of 2^{32} for x^{2} to fit in a long, but it works in practice since audio rarely hits maximum volume and our clip is 10 seconds long; we computed for 90 seconds.

μ-law Companding Algorithm

- One trick is to reduce the bitrate of the mp3 at the expense of audio quality, going from 16 -bit audio to 8 -bit audio.
- A naive way to do it would be to multiply the real number by 2^{8} and round, but a better way is the μ-law algorithm, a trick that preserves frequencies closer to the human voice.
■ A comparison between scaling and the μ-law is shown here.
- With 8-bit audio, $m^{2} n=2^{16} \cdot 4 \cdot 10^{6} \approx 2^{38}$. This goes over the limit of 2^{32} for x^{2} to fit in a long, but it works in practice since audio rarely hits maximum volume and our clip is 10 seconds long; we computed for 90 seconds.
■ An implementation is given here and a demonstration here.

Table of Contents

FFT

Huan

Introduction
Algorithms
Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications

Audio

2D Convolutions
Separable Kernels FFT Algorithm

Conclusion
Sample
Problems

Past

Lectures
References

1 Introduction
2 Algorithms

- Naive
- Fast Fourier Transform
- Point-Value Representation
- Complex Roots of Unity
- Iterative Variant
- Number Theoretic Transform

3 Applications of Convolutions

- Audio Processing
- 2D Convolutions
- Separable Kernels

■ FFT Algorithm
4 Conclusion
5 Sample Problems
6 Past Lectures
7 References

2D Convolutions

- 2D convolutions, a convolution generalized to matrices, are useful in computer vision for a variety of reasons, including edge detection and convolutional neural networks.
- Their exact usage will not be discussed here, and instead we will discuss an efficient way to calculate a 2D convolution with the FFT we have already developed.

Definitions

We have an "data" matrix, representing an image, and we have a kernel matrix, which is the matrix we imagine sliding over the image. This is also known as a filter.

Scipy Definition

- For 2D convolutions, the result is slightly ambiguous, depending on the exact definition.
■ We will use scipy's definition, where to calculate the value of the convolution at a particular point, we imagine the bottom right corner of the kernel placed over that point.

Convolution Example

FFT

Huan

Introduction

Algorithms

Naive

FTT
Point-Value
Complex Roots
Iterative
NTT
Applications

Audio

2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion

Problems

Definition of a 2D Convolution

Introduction

$$
(x * h)[i, j]=\sum_{k=0}^{i} \sum_{l=0}^{j} x[k][/] h[i-k][j-l]
$$

We define the 2D convolution between an image x of size $M \times N$ and a kernel h of size $H \times W$ as follows (similar to the 1D case, we assume both matrices are padded with 0 's):

Definition of the 2D convolution

- This operation is also symmetric, so what we call the image and the kernel is essentially arbitrary.
- By convention, the kernel is the smaller matrix.
- The resulting matrix is going to be of size $(M+H-1) \times(N+W-1)$ from the same logic as the 1D case. Thus, the running time is $O(M N H W)$.
- We can, however, take advantage of a trick if the kernel has a certain property.

Table of Contents

FFT

Huan

Introduction
Algorithms
Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications

Audio

2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion
Sample
Problems

Past

Lectures
References

1 Introduction
2 Algorithms

- Naive
- Fast Fourier Transform
- Point-Value Representation
- Complex Roots of Unity
- Iterative Variant
- Number Theoretic Transform

3 Applications of Convolutions

- Audio Processing
- 2D Convolutions
- Separable Kernels
- FFT Algorithm

4 Conclusion
5 Sample Problems
6 Past Lectures
7 References

Separable Kernels

FFT

Separable
A matrix M is separable if it can be written as $\vec{u} \vec{v}^{\top}$ for some vectors \vec{u}, \vec{v}.

Algorithms
Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion
Sample
Problems
Past
Lectures
References

Separable Kernels

Separable

A matrix M is separable if it can be written as $\vec{u} \vec{v}^{\top}$ for some vectors \vec{u}, \vec{v}.

Sobel matrix

The famous Sobel matrix for edge detection is separable:

$$
\left[\begin{array}{lll}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & -1
\end{array}\right]
$$

Separable Kernels

Separable

A matrix M is separable if it can be written as \vec{u}^{\top} for some vectors \vec{u}, \vec{v}.

Sobel matrix

The famous Sobel matrix for edge detection is separable:

$$
\left[\begin{array}{lll}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & -1
\end{array}\right]
$$

Separating the convolution

If M is separable, we can convolve with \vec{u} and then with \vec{v}.

Proof of Separability

FFT
Huan

Introduction

Algorithms

Theorem

If $h=\vec{u} \vec{v}^{\top}$, then $(x * h)=((x * \vec{u}) * \vec{v})$, i.e. we can separate a convolution into two parts.

Proof.

$$
(x * u)[i, j]=\sum_{k=0}^{i} \sum_{l=0}^{j} x[k][/] u[i-k][j-l] \quad \text { Definition }
$$

Since u is a column vector, it only has values when $I=j$, removing the inner sum.

$$
=\sum_{k=0}^{i} x[k][j] u[i-k][0]
$$

Proof of Separability

Proof.

Convoluting with v,

$$
((x * u) * v)[i, j]=\sum_{k=0}^{i} \sum_{l=0}^{j}\left(\sum_{m=0}^{k} x[m][/] u[k-m][0]\right) v[i-k][j-I]
$$

Since v is a row vector, it only has values when $k=i$, removing the outermost sum.

$$
=\sum_{l=0}^{j}\left(\sum_{m=0}^{i} x[m][/] u[i-m][0]\right) v[0][j-l]
$$

Proof of Separability

Proof.

Swapping the order of summations and renaming m to k,

$$
=\sum_{k=0}^{i} \sum_{l=0}^{j} x[k][I] u[i-k][0] v[0][j-l]
$$

From the fact that $h[x][y]=u[x][0] v[0][y]$,

$$
\begin{aligned}
& =\sum_{k=0}^{i} \sum_{l=0}^{j} x[k][l] h[i-k][j-l] \\
& =(x * h)
\end{aligned}
$$

Runtime Analysis

FFT

Huan

Introduction

■ How does this help us?
Algorithms
Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion
Sample
Problems
Past
Lectures

Runtime Analysis

■ How does this help us?

- Well, recall the running time of $O($ MNHW $)$.

Runtime Analysis

■ How does this help us?

- Well, recall the running time of $O($ MNHW $)$.
- If we do two convolutions of a kernel of $H \times 1$ and another of $1 \times W$, the running time will be $O(M N H+M N W)=O(M N(H+W))$.

Runtime Analysis

■ How does this help us?

- Well, recall the running time of $O($ MNHW $)$.
- If we do two convolutions of a kernel of $H \times 1$ and another of $1 \times W$, the running time will be $O(M N H+M N W)=O(M N(H+W))$.
- This is a significant improvement as HW grows quadratically while $H+W$ grows linearly.

Runtime Analysis

■ How does this help us?

- Well, recall the running time of $O($ MNHW $)$.
- If we do two convolutions of a kernel of $\mathrm{H} \times 1$ and another of $1 \times W$, the running time will be $O(M N H+M N W)=O(M N(H+W))$.
- This is a significant improvement as $H W$ grows quadratically while $H+W$ grows linearly.
- We can also use repeated 1D convolution to compute the 2D convolution for the specific case of a vector, yielding a $O(M N \log M N)$ time algorithm.

Limits of Separability

■ However, clearly not every matrix is separable.

- The conditions are quite strict, a matrix is separable if and only if every pair of rows is a multiple of each other, put another way, the matrix is made up of multiples of a particular row vector.
- As a consequence, the matrix is also made up of multiples of a particular column vector.
- These matrices are relatively rare, so there is utility in deriving a more general algorithm.

Table of Contents

FFT

Huan

Introduction
Algorithms
Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions Separable Kernels FFT Algorithm

Conclusion
Sample Problems

Past

Lectures
References

1 Introduction
2 Algorithms

- Naive
- Fast Fourier Transform
- Point-Value Representation
- Complex Roots of Unity
- Iterative Variant
- Number Theoretic Transform

3 Applications of Convolutions

- Audio Processing
- 2D Convolutions
- Separable Kernels

■ FFT Algorithm
4 Conclusion
5 Sample Problems
6 Past Lectures
7 References

Reduction to 1D Convolution

FFT

Huan

- The idea is to reduce 2D convolutions to 1D convolutions.

Reduction to 1D Convolution

- The idea is to reduce 2D convolutions to 1D convolutions.
- The observation is that if we flatten both matrices into a 1D list by reading from top to bottom, left to right, we can just convolve in 1D and reconstruct the matrix afterwards.

Reduction to 1D Convolution

- The idea is to reduce 2D convolutions to 1D convolutions.
- The observation is that if we flatten both matrices into a 1D list by reading from top to bottom, left to right, we can just convolve in 1D and reconstruct the matrix afterwards.
- We need to make sure both matrices are sufficiently padded with zeros, such that the zeros force values in the kernel to their proper rows in the image.

Reduction to 1D Convolution

- The idea is to reduce 2D convolutions to 1D convolutions.

■ The observation is that if we flatten both matrices into a 1D list by reading from top to bottom, left to right, we can just convolve in 1D and reconstruct the matrix afterwards.

- We need to make sure both matrices are sufficiently padded with zeros, such that the zeros force values in the kernel to their proper rows in the image.
- It turns out that we can just pad both matrices to the final column size of the convolution, $N+W-1$, flatten both, convolve with the FFT, and then reshape the resulting list to a matrix of proper size.

Summary

FFT
Huan

1 Pad the rows of both matrices with zeros such that each row has a width of $N+W-1$

Summary

1 Pad the rows of both matrices with zeros such that each row has a width of $N+W-1$
2 Flatten both by reading top to bottom, left to right

Summary

1 Pad the rows of both matrices with zeros such that each row has a width of $N+W-1$
2 Flatten both by reading top to bottom, left to right
3 convolve the resulting lists in 1D

Summary

1 Pad the rows of both matrices with zeros such that each row has a width of $N+W-1$
2 Flatten both by reading top to bottom, left to right
3 convolve the resulting lists in 1D
4 Reconstruct a 2D matrix, because we know its shape is $(M+H-1) \times(N+W-1)$

The 2D Convolution Algorithm

Algorithm 2D Convolution Algorithm

```
def flatten(m: list, pad=0) -> list:
        """ Flattens a matrix into a list. """
    return [x for row in m for x in row + [0]*pad]
def reshape(l: list, m: int, n: int) -> list:
        """ Shapes a list into a MxN matrix."""
        return [[l[r*n + c] for c in range(n)]
        for r in range(m)]
    def conv(h: list, x: list):
        """ Computes the 2D convolution. """
        M, N, H, W = len(x), len(x[0]), len(h), len(h[0])
        # need to pad the columns to the final size
        h, x = flatten(h, N - 1), flatten(x, W - 1)
        return reshape(fft(h, x), M + H - 1, N + W - 1)
```


Trimming

- In many computer vision applications, the kernel is a square matrix of size $K \times K$, where K is an odd number.

Naive

Algorithms

FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels FFT Algorithm

Conclusion

Trimming

- In many computer vision applications, the kernel is a square matrix of size $K \times K$, where K is an odd number.
- The middle value of the kernel is then placed over each pixel of the image, yielding a transformed image of the same dimensionality as the original.

Trimming

- In many computer vision applications, the kernel is a square matrix of size $K \times K$, where K is an odd number.
■ The middle value of the kernel is then placed over each pixel of the image, yielding a transformed image of the same dimensionality as the original.

■ We can simulate this by simply cutting off the first and last $\frac{K-1}{2}$ rows and the same for the columns. This transforms the resulting size from $N+K-1$ to $N+K-1-2 \frac{K-1}{2}=N$.

Trimming

Runtime Analysis

FFT

Huan

Introduction

Algorithms

Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications

Audio

2D Convolutions Separable Kernels FFT Algorithm
Conclusion
Sample

Problems

Past
Lectures

- The running time of the algorithm is going to be $O(M N \log M N)=O(M N(\log N+\log M)=O(M N \log N)$ since we convolve a list of length $M(N+W-1)$, and we assume $N \geq M>W$.

Runtime Analysis

- The running time of the algorithm is going to be $O(M N \log M N)=O(M N(\log N+\log M)=O(M N \log N)$ since we convolve a list of length $M(N+W-1)$, and we assume $N \geq M>W$.
- This is not necessarily faster than the brute-force algorithm; it depends on the kernel size.

Runtime Analysis

FFT

Huan

- The running time of the algorithm is going to be $O(M N \log M N)=O(M N(\log N+\log M)=O(M N \log N)$ since we convolve a list of length $M(N+W-1)$, and we assume $N \geq M>W$.
- This is not necessarily faster than the brute-force algorithm; it depends on the kernel size.
■ For simplicity, suppose we have a $N \times N$ image and a $K \times K$ kernel where $N>K$. Brute force yields $O\left(N^{2} K^{2}\right)$ while the FFT algorithm yields $O\left(N^{2} \log N\right)$.

Runtime Analysis

- The running time of the algorithm is going to be $O(M N \log M N)=O(M N(\log N+\log M)=O(M N \log N)$ since we convolve a list of length $M(N+W-1)$, and we assume $N \geq M>W$.
- This is not necessarily faster than the brute-force algorithm; it depends on the kernel size.

■ For simplicity, suppose we have a $N \times N$ image and a $K \times K$ kernel where $N>K$. Brute force yields $O\left(N^{2} K^{2}\right)$ while the FFT algorithm yields $O\left(N^{2} \log N\right)$.
■ Thus, if $\log N<K^{2}$, then the FFT is going to be faster.

Runtime Analysis

FFT

- The running time of the algorithm is going to be $O(M N \log M N)=O(M N(\log N+\log M)=O(M N \log N)$ since we convolve a list of length $M(N+W-1)$, and we assume $N \geq M>W$.
- This is not necessarily faster than the brute-force algorithm; it depends on the kernel size.
- For simplicity, suppose we have a $N \times N$ image and a $K \times K$ kernel where $N>K$. Brute force yields $O\left(N^{2} K^{2}\right)$ while the FFT algorithm yields $O\left(N^{2} \log N\right)$.
- Thus, if $\log N<K^{2}$, then the FFT is going to be faster.
- For $K>5$ that is a fair assumption since $K^{2}=25,2^{25}$ is several million. Obviously the FFT algorithm has a much larger constant factor, but for a sufficiently large kernel the time savings become greater and greater.

Conclusion

- The convolution, an operator very useful for signal, audio, and image processing, can be efficiently computed with the Fast Fourier Transform, or FFT.

Conclusion

- The convolution, an operator very useful for signal, audio, and image processing, can be efficiently computed with the Fast Fourier Transform, or FFT.
- If the data is integer, then floating-point arithmetic can be avoided with the Number Theoretic Transform (NTT), a variant of the FFT which uses modulo instead of complex numbers, and calculates entirely in integers.

Conclusion

- This lecture skips over the continuous case (what l've been calling the Fast Fourier Transform is more mathematically called the Discrete Fourier Transform, or DFT) but the idea is essentially the same, summations turn into integrals.

Conclusion

- This lecture skips over the continuous case (what I've been calling the Fast Fourier Transform is more mathematically called the Discrete Fourier Transform, or DFT) but the idea is essentially the same, summations turn into integrals.
- It also skips over the mathematical interpretation of the FFT, involving decomposing a function into a series of sine and cosine waves.
- This is useful for signal processing and audio analysis, but requires a stronger mathematical background and to be honest, I haven't studied it at all myself. Fourier analysis goes deeper than we need here.

Conclusion

Introduction to Algorithms is definitely the most helpful source on the FFT (from a computer science perspective), and more thorough treatments of the FFT from an engineering or mathematical standpoint are not hard to find.

Sample Problems

Examples of problems using the FFT

FFT

Huan

Introduction

Algorithms
Naive
FTT
Point-Value
Complex Roots
Iterative
1 SPOJ POLYMUL: Direct application of the FFT.

Audio

2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion
Sample
Problems
Past
Lectures

Sample Problems

Examples of problems using the FFT

2 SPOJ MUL: Given 1000 pairs of numbers, compute the product of each pair; each number can have up to 10,000 digits.

Sample Problems

Examples of problems using the FFT

2 Solution: Think of numbers as polynomials, where the digits are coefficients and x is 10 . Then, you can multiply two numbers by multiplying the polynomials. However, there is no guarantee that the coefficients of the resulting polynomial are less than 10, so it is not a valid number. As a last post-processing step, start from the smallest place value and move your way to the largest, moving the digit overflow from one place value to the next. Since you iterate over the number of digits in the number, it takes $O(\log n)$ which is dominated by the FFT.

Sample Problems

Examples of problems using the FFT

2 An extension of this idea is the Schönhage-Strassen algorithm, which disregards the requirement that the intermediate numbers fit in a long, at the cost of being $O(n \log n \log \log n)$. A more recent algorithm, by Harvey and van der Hoeven, achieves $O(n \log n)$.

Sample Problems

Examples of problems using the FFT

3 SPOJ MAXMATCH: Given a string S of length N made up of the characters " a ", " b ", and " c ", compute the maximum self-matching, where a self-matching is defined as the number of characters which match between S and S shifted some nonzero number of characters.

Sample Problems

Examples of problems using the FFT

3 Solution: For an offset i, the size of the overlap will be $N-i$. So we just need to find the number of differences, and subtract that from $N-i$ to obtain the number of matches. The easiest thing to do is to keep track of each character separately, so to compute the differences for each character. Suppose our character is "a". We encode "a" as a 0 , and the other characters as a 1 . We then find the ℓ^{2} norm between this new list and this list with N 1's added to it (so that when we overlap, the non " a " characters aren't counted). This has the complication of counting "a"'s which are off the edge of the string, which we can account for by simply keeping track of the number of "a"'s we have seen.

Sample Problems

Examples of problems using the FFT

3 Given $a[i]$ as the number of mismatches with the character "a" at a shift of i, and $b[i], c[i]$, the number of matches is $N-i-\frac{a[i]+b[i]+c[i]}{2}$. We divide by 2 because we count each mismatch twice (once for each character in the pair).

Sample Problems

Examples of problems using the FFT

3 A much conceptually simpler algorithm is to encode "a", "b", and "c" cleverly and then compute the matches in one shot. If we encode "a" as ($1,0,0$), "b" as ($0,1,0$), and "c" as $(0,0,1)$, the FFT of the resulting list with its reverse will give us the number of matches at each index because the character representations dot each other will be 1 if they are equal, and 0 if they are unequal. Thus, the FFT will give us exactly the number of matches, but we need to only look at every 3rd index since the other 2 are byproducts of our transformation.
In practice, running one big FFT is faster than running 3 smaller FFTs.

Sample Problems

Examples of problems using the FFT

FFT

Huan

Introduction

Algorithms
Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion
Sample
Problems
Past
Lectures
References

4 Codechef FARASA: Given an array, find the number of distinct sums of a contiguous subarray.

Sample Problems

Examples of problems using the FFT

FFT

Huan

Introduction

Algorithms
Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion
Sample
Problems
Past
Lectures
References

4 Solution: editorial. Fair warning, time bounds are ridiculous.

Sample Problems

Examples of problems using the FFT

5 Codeforces Round \#296: Given two strings T, S and an error bound k, find all the positions where T occurs in S, where T "occurring" at some index i means that the j th character of T has a corresponding character within k of its position.

Sample Problems

Examples of problems using the FFT

FFT

Huan

Introduction

Algorithms
Naive
FTT
Point-Value
Complex Roots
Iterative
5 Solution: Honestly no clue but it has the "FFT" tag.

Sample Problems

Examples of problems using the FFT

FFT
Huan

Introduction

Algorithms
Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels
FFT Atgorithim
Conclusion
Sample
Problems
Past
Lectures

6 String matching with wildcards: Given two binary strings T, S, T has length N and has wildcards which match any character in S, find all occurrences of T in S.

Sample Problems

Examples of problems using the FFT

6 Solution: Encode 1 as 1 and 0 as -1 . The dot product between T and the slice that T overlaps with S will be be N if they match exactly and less than N if they don't match exactly. To account for wildcards, encode a wildcard as 0 and count the number of wildcards, C. Then, if they match exactly it will be $N-C$, and less then that if they don't.

Sample Problems

Examples of problems using the FFT

6 This can be generalized to non-binary strings if you apply the above algorithm to each character, setting that character as 1 and not that character as -1 . Sum over all possible characters, and that will tell you whether there is a mismatch somewhere (similar to SPOJ MAXMATCH).

Sample Problems

Examples of problems using the FFT

6 This idea can also be applied to string matching without wildcards. Encode each character as its ASCII value in a polynomial, and compute the ℓ^{2}-norm between T and S. The ℓ^{2} norm will be 0 if they match, and positive if they don't.

Sample Problems

Examples of problems using the FFT

FFT

Huan

Introduction

Algorithms

Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion
Sample
Problems
Past
Lectures

7 3SUM: Given a list of integers between $-N$ and N, find 3 numbers that add up to 0 (duplicates are allowed).

Sample Problems

Examples of problems using the FFT

7 Solution: The basic idea will be to encode the list into a length $2 N$ polynomial p where the degree is an integer value and the coefficient is whether that value appears in the array. Compute p^{3} and read off the coefficient of x^{0}.

Sample Problems

Examples of problems using the FFT

7 However, this doesn't work if the degrees are negative. If the most negative power of x in p is x^{-N}, We can simply multiply p by x^{N} to make every power positive, making a new polynomial p^{\prime}. Then, after computing $\left(p^{\prime}\right)^{3}$, instead of looking at the coefficient of x^{0}, we can look at the coefficient of $x^{3 N}$ (accounting for the fact that $p^{\prime}=x^{N} p$,

$$
\left(p^{\prime}\right)^{3}=x^{3 N} p^{3}, p^{3}=\frac{\left(p^{\prime}\right)^{3}}{x^{3 N}}
$$

Sample Problems

Examples of problems using the FFT

FFT

Huan

Introduction

Algorithms

Naive
FTT
Point-Value
Complex Roors
Iterative
NTT
Applications
Audio
2D Convolutions
Scparable Kernels
FFT Algorithm
Conclusion
Sample
Problems

Past

Lectures

7 Alternative solution, if duplicates aren't allowed: here (look for "color coding").

Sample Problems

Examples of problems using the FFT

FFT

Huan

Introduction

Algorithms
Naive
FTT
Point-Value
Complex Roots
Iterative
NTT
Applications
Audio
2D Convolutions
Separable Kernels
FFT Algorithm
Conclusion
Sample
Problems
Past
Lectures
References

8 Anime Music Quiz: Guess which anime an intro/outro comes from.

Sample Problems

Examples of problems using the FFT

FFT

Huan

Introduction

Algorithms
Naive
FTT
Point-Value
Complex Roots
Iterative
8 Solution: The Shazam algorithm.

Applications

Audio

2D Convolutions
Separable Kernels FFT Algorithm

Conclusion

Sample

Problems

Past

Lectures
References

Past Lectures

Past Lectures on similar topics

1 "Edge Detection", (Alexey Didenkov, 2018)
2 "Fast Multiplication: Karatsuba and FFT" (Haoyuan Sun, 2016)

3 "Multiplying Polynomials", (Haoyuan Sun, 2015)
4 "Fast Fourier Transform", (Sreenath Are, 2013)

References

Resources that were useful when compiling this lecture

1 Introduction to Algorithms, chapter 30 (very helpful)
(2 The number theoretic transform
3μ-law algorithm
4 Picard's Existence and Uniqueness Theorem
5 Separable convolutions

