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k-means, kd-Trees, and Median of Medians
Color Quantization done fast
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Color Quantization
Reducing the number of colors

Color quantization is the
reduction of the number of
colors in an image.

For example, a typical
RGB image stores 1 byte
per channel, so 24 bits
over 3 colors = 224 colors.
This has applications in
compression, but is most
often used for legacy
hardware (whose memory
is limited, so the number of
bits/pixel must be limited).

Image amenable to quantization

Figure: A summary of this lecture
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Techniques

Suppose we want to decompose an image into k colors.

One simple approach would be to find the k most frequent
colors and use those.
This has a pretty obvious failure mode.

Failure mode for the frequency heuristic

Suppose we have an image with 4 colors: dark red has 50
pixels, light red has 49, dark blue has 48, and light blue has 47.
If k = 2, then we would choose dark red and light red, which
would be problematic for the blues. A better selection would
probably be to pick a normal red and a normal blue, at the cost
of not showing the dark/light contrast within the colors.
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Techniques, continued

We could address this by splitting our color space into color
ranges, or using a different algorithm like the median cut
algorithm, which constructs a kd-tree on the color space.

Today, we will discuss applying the k-means clustering
technique (an AI/ML lab here at TJ).
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k-means

Suppose we have a set of points and a set of k center points.
Define the Euclidean distance between two points as the
magnitude of the vector difference, i.e.

dist(~u, ~v) = ‖~u − ~v‖ =
√

(u1 − v1)2 + (u2 − v2)2 + . . .

We want to pick our center points such that they minimize the
sum of the distance between each point to its closest center, i.e.

argmin
centers

∑
~p∈points︸ ︷︷ ︸

sum over all points

min
~c∈centers

dist(~p, ~c)︸ ︷︷ ︸
closest center to ~p



Huan

Color
Quantization

k-means
clustering
k-means

k-means++

Practical
Example

kd-Trees
Construction

Median-based
Construction

Finding
Medians
Select

Median of
Medians

Decision Tree

kd-Trees,
Revisited
Nearest Neighbor
Queries

References

k-means

Suppose we have a set of points and a set of k center points.
Define the Euclidean distance between two points as the
magnitude of the vector difference, i.e.

dist(~u, ~v) = ‖~u − ~v‖ =
√

(u1 − v1)2 + (u2 − v2)2 + . . .

We want to pick our center points such that they minimize the
sum of the distance between each point to its closest center, i.e.

argmin
centers

∑
~p∈points︸ ︷︷ ︸

sum over all points

min
~c∈centers

dist(~p, ~c)︸ ︷︷ ︸
closest center to ~p



Huan

Color
Quantization

k-means
clustering
k-means

k-means++

Practical
Example

kd-Trees
Construction

Median-based
Construction

Finding
Medians
Select

Median of
Medians

Decision Tree

kd-Trees,
Revisited
Nearest Neighbor
Queries

References

k-means, continued

This problem is NP-hard, necessitating a greedy algorithm.

k-means algorithm

The standard greedy algorithm alternates between two steps
until convergence: Given k initial center points,

1 Assign each point to its closest center
2 Update each center to the centroid of the points assigned

to it, where the centroid is the arithmetic mean.

Intuitively, if the center points are fixed, then the best
assignment is to assign each point to its closest center.
In the dual case, if the assignment of points to centers is
fixed, then the best center position is the mean point, i.e.

E[S ] =
1
‖S‖

∑
~p∈S

~p
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k-means, continued

“Convergence” is when after the centers are updated, the
assignment of points to their closest center is the same as
the assignment before the update (the next center update
would be the same).

This finds a local optimum, which is not necessarily the
global optimum.
The number of iterations until convergence is also
superpolynomial in the worst case, but in general works
quite well in practice.
Our pick for the initial k centers is quite important!
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k-means++
An initialization scheme for k-means

Two theoretical problems with k-means

1 Running time is superpolynomial with respect to the
number of points

2 Approximation can be made arbitrarily bad compared to
the optimal clustering

k-means++ fixes the latter problem; it guarantees an O(log k)
approximation bound in expectation (i.e., over expectation the
clusters generated by k-means++ has a distance of at most
O(log k) times greater than the optimal clustering).
How does it work?
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k-means++, continued

k-means++ algorithm

1 Pick the first center point at random

2 From there, pick the next center point by sampling the
probability distribution where a point ~p is picked with
weighting dist(~p, ~c)2, where ~c is the closest center

3 Repeat until k centers are picked
4 Run k-means as usual

Intuitively, picking centers far away from each other is a
good thing, so the weighting favors points that are far
away from the existing centers.
Also, it’s impossible to have two identical centers, since the
distance of a point to itself is 0, so its weight would be 0.
How do we sample this probability distribution?
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Sampling a random variable

Algorithm Sampling a random variable

def sample(p: list) -> float:
""" Samples a value from a random variable. """
r = random.random()
i = cmf = 0
while i < len(p) - 1:

cmf += p[i]
if r < cmf:

break
i += 1

return i
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Sampling a random variable, justification

Claim: This function has the same cumulative mass function as
the underlying probability distribution.

For a uniform random variable X ∼ [0, 1], the probability that
X is less than some value x , p(X ≤ x), is∫ x

0
1 dt = x

The chance sample outputs an index ≤ j is if the sum of the
probabilities up to j is greater than the uniform r.v. X , or
flipping the inequality, if X is less than the sum.

p(sample ≤ j) = p(X ≤
j∑

i=0

p[i ]) =

j∑
i=0

p[i ]
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Sampling a random variable, justification

Claim: This function has the same cumulative mass function as
the underlying probability distribution.
For a uniform random variable X ∼ [0, 1], the probability that
X is less than some value x , p(X ≤ x), is∫ x

0
1 dt = x

The chance sample outputs an index ≤ j is if the sum of the
probabilities up to j is greater than the uniform r.v. X , or
flipping the inequality, if X is less than the sum.

p(sample ≤ j) = p(X ≤
j∑

i=0

p[i ]) =

j∑
i=0

p[i ]
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Sampling a random variable, continued

By definition, this is the cmf of the discrete r.v.

If sample has the same cmf as p, then it has the same pmf. If
it has the same pmf, then this is "sampling the probability
distribution" represented by p by definition!

Step 2 of k-means++, in detail

1 Make a list of the squared distances from a point to its
nearest center.

2 Normalize this list into a probability distribution by dividing
by its sum: p = [x/sum(l) for x in l]

3 Call sample to get a index which corresponds to a point.
4 Add this point to the list of centers.
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Notes on k-means++

Yes, k-means++ adds an additional k passes over the data
compared to picking k points at random.

First, as stated earlier, k-means++ bounds the amount of
error and will generally produce higher quality clusters.
Second, the better initialization also reduces the number of
iterations until convergence for k-means, making it actually
faster in practice.
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Notes on k-means for color quantization

Let’s go back to the original problem, color quantization.

How do we apply k-means for color quantization?
If we want to reduce an image to k colors, we simply run
k-means, where our points are the RGB values. This finds
k colors, and we assign each color in the original image to
the closest color in our k colors as usual, except we need to
round our k centers to integer pixel values.
Note 1: Euclidean distance is not the best in terms of color
difference perception (a smaller Euclidean distance does
not necessarily imply that the colors look closer compared
to a larger distance). We can change to the Lab color
space or change distance measures.
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Notes on k-means for color quantization, continued

Note 2: Square roots are expensive, and if we don’t ever need
the actual distance, we can always compute distance squared.

We use dist in two ways:
1 To find the closest center point to a given point
2 To weight the probability distribution in k-means++

Performing a case-by-case analysis,

1 For case 1, f (x) = x2 is a monotonic function, i.e. if
x < y then f (x) < f (y) (if x is nonnegative, and distances
are always nonnegative by definition). Therefore,
minimizing f (x) is equivalent to minimizing x . The same
trick is frequently used in machine learning loss functions.

2 For use case 2, we weight a point by its squared distance.
Thus, what I call “dist” is in fact

dist(~u, ~v) = ‖~u − ~v‖2 = (u1 − v1)
2 + (u2 − v2)

2 + . . .
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Pokémon profile picture month

Per TJ tradition, December is “Pokémon profile picture month”,
when people change their Facebook profile pictures (“pfp”s) to
their favorite Pokémon.

(a) The image I like,
original Shaymin

(b) The color scheme of
a shiny Shaymin

(c) First image with the
second’s color

Figure: Color transfer

Suppose I like the pose of the first image, but I want the
Shaymin to be shiny. Can I use k-means to transfer the color?
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k-means for Pokémon pfp month

1 Pick a good value of k . k should be large enough such
that the image still looks reasonably good, but small
enough for you to be able to modify colors by hand. In this
case, k = 16.

2 Run k-means as usual
3 Identify which colors are green (to substitute with the

shiny colors)
4 Temporarily set a green color to (0, 0, 255), i.e. an

indicator color to see where it appears in the image.
5 Identify the corresponding color in the shiny form
6 Make the replacement
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k-means for Pokémon pfp month, code

color modification
centers, ids, groups = k_means(K, data)
px = [tuple(round(c) for c in center) \

for center in centers]
# color modifications to make shiny
px[ 5] = ( 55, 199, 179) # main color
px[ 6] = ( 17, 112, 106) # eye color
px[ 8] = ( 97, 210, 182) # tips of head/feet
px[15] = ( 35, 138, 123) # parts in shadow
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Making k-means faster

Back to theory. Suppose k-means takes I iterations to
converge and there are N points.

Each iteration we need to compute the closest center for
every point, and the easiest way to do that is to iterate
over every center point.
There are N points and K center points, so it takes
O(NK ), making the overall computational complexity
O(NKI ) over I iterations.
We can speed this up if we can compute the closest center
point quicker, which we can do with kd-trees.
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kd-Tree

kd-tree

A kd-tree is essentially a binary search tree (BST) generalized
to multiple dimensions. Each node has at most 2 children.

In a BST, to insert a value we compare it against the
root’s value; if it’s less we recur on the left subtree, if
greater, on the right subtree.

A kd-tree is similar, except nodes hold a point, not a value.
A point has multiple dimensions D, so at each level of the
kd-tree we pick and compare on a particular “cutting
dimension” d , where 0 ≤ d < D.
We typically cycle through cutting dimensions.
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kd-Tree insert

Figure: kd-Tree in 2 dimensions
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kd-Tree node

kd-tree node
class kdNode:

def __init__(self, point: tuple=None, cd: int=0):
self.child = [None, None]
self.point = point
self.D = len(point)
self.cd = cd

get children
def dir(self, p: tuple) -> int:

""" Gets the proper left/right child
depending on the point p. """

return p[self.cd] >= self.point[self.cd]
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kd-Tree insert code

Algorithm kd-Tree Insert

def __add(self, t, p: tuple, parent=None):
if t is None: # found leaf

t = kdNode(p, (parent.cd + 1) % parent.D)
elif t.point == p: # ignore duplicates

return t
else: # update pointers

t.child[t.dir(p)] = \
self.__add(t.child[t.dir(p)], p, t)

return t

def add(self, p: tuple) -> None:
if self.point is None: # empty tree

self.__init__(p) # update the root
self.__add(self, p)
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Runtime Analysis

Like a BST, we would expect insert to take O(log n), since
we do a path from root to leaf and in a balanced tree the
depth is log n, where n is the number of nodes (equivalent
to the number of points).

However, there is a clear degenerate case: if each point
increases along every dimension, then the tree becomes a
line with height O(n). 1+ 2+ · · ·+ n = O(n2), so it might
take quadratic time to build a kd-tree in the worst case.
Common BST tricks like AVL trees seem difficult (are
rotations even possible if they change the cutting
dimension?).
In practice, the points are commonly known ahead of time.
Can we guarantee an O(n log n) build over n points if we
know the n points ahead of time?
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Pre-sort algorithm

The key insight is that splitting the points perfectly in half
between the two subtrees is the best possible split. This
means we should split based on the median value.

To efficiently keep track of the median, we make D copies
of the points. We sort each copy on a different dimension.
Finally, we pass this list of lists to the kd-tree build
function, find the median point, split our list of lists into a
left and right side, and recursively build the tree. As long
as we maintain the sorted invariant, we can compute the
median point on any dimension in O(1).
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The key insight is that splitting the points perfectly in half
between the two subtrees is the best possible split. This
means we should split based on the median value.
To efficiently keep track of the median, we make D copies
of the points. We sort each copy on a different dimension.
Finally, we pass this list of lists to the kd-tree build
function, find the median point, split our list of lists into a
left and right side, and recursively build the tree. As long
as we maintain the sorted invariant, we can compute the
median point on any dimension in O(1).
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Pre-sort algorithm, code

wrapper over kdNode
class kdTreeSort(kdNode):

def __init__(self, points: list=[]) -> None:
super().__init__()
if len(points) > 0:

D = len(points[0])
# no need for duplicate points
self.points = list(set(points))
# sort points on each dimension
pointsd = [sorted(self.points,

key=lambda p: p[d])
for d in range(D)]

build_tree(self, pointsd)
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Pre-sort algorithm, code

split
def subsplit(pointsd: list, seen: set) -> list:

""" Only takes the points that are in seen. """
return [[p for p in points if p in seen]

for points in pointsd]

def split(pointsd: list, cd: int, p: int) -> tuple:
""" Splits by the plane x_cd = p[cd]. """
left, right = set(), set()
for point in pointsd[0]:

if point != p:
# add point with the same value as p
# at cd to the right side
(left if point[cd] < p[cd] \
else right).add(point)

return subsplit(pointsd, left), \
subsplit(pointsd, right)
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Pre-sort algorithm, code

Algorithm Pre-sort algorithm for kd-tree construction

def build_tree(t: kdNode, pointsd: list,
cd: int=0) -> kdNode:

N, D = len(pointsd[cd]), len(pointsd)
t.D, t.cd = D, cd
t.point = pointsd[cd][N//2] # median
next_cd = (cd + 1) % D
t.child = [build_tree(kdNode(), l, next_cd) \

if len(l[0]) > 0 else None
for l in splitd(pointsd, cd, t.point)]

return t
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Runtime Analysis

The running time is dominated by subsplit, which must
split the D copies of N points.
Determining whether a point is in the left or right set is at
least an O(D) operation, since the hash needs to take into
account each value of the point.
There are O(ND) checks, so subsplit runs in O(D2N).
Over the logN levels of the tree, the pre-sort algorithm
runs in O(D2N logN) (each level of the tree must split N
points in total).
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Runtime Improvement

We can improve subsplit’s performance by noticing that
we don’t actually need to copy the points with all their
dimensions; we can assign an arbitrary distinct ID to each
point and maintain the D lists based off this integer ID.
The simplest ID to use is the point’s index in the points
list, as to go from an ID to a point is just indexing the list.
Since we only need a point’s values when comparing on a
cutting dimension, we can find the cutting dimension value
in O(1) by looking up the point and then indexing the
point at that cutting dimension.



Huan

Color
Quantization

k-means
clustering
k-means

k-means++

Practical
Example

kd-Trees
Construction

Median-based
Construction

Finding
Medians
Select

Median of
Medians

Decision Tree

kd-Trees,
Revisited
Nearest Neighbor
Queries

References

Runtime Analysis, continued

This optimization shaves off a D factor, so our running
time goes from O(D2N logN) to O(DN logN) where the
runtime is dominated by the D initial O(N logN) sorts.

Recall that we need to do the sorts to find the median
efficiently. Can we shave off another D factor if we find the
median a different way?
We could maintain a single list of points, and simply sort
this list on the cutting dimension at each level. That adds
a logN factor at every level, so the running time is
O(N log2N), which is slower if logN > D.
We could also just pick a random point to split on. This is
equivalent to just calling add repeatedly on each point, so
it has the same quadratic worst case running time.
Luckily, there is a way to find the median in linear time!



Huan

Color
Quantization

k-means
clustering
k-means

k-means++

Practical
Example

kd-Trees
Construction

Median-based
Construction

Finding
Medians
Select

Median of
Medians

Decision Tree

kd-Trees,
Revisited
Nearest Neighbor
Queries

References

Runtime Analysis, continued

This optimization shaves off a D factor, so our running
time goes from O(D2N logN) to O(DN logN) where the
runtime is dominated by the D initial O(N logN) sorts.
Recall that we need to do the sorts to find the median
efficiently. Can we shave off another D factor if we find the
median a different way?

We could maintain a single list of points, and simply sort
this list on the cutting dimension at each level. That adds
a logN factor at every level, so the running time is
O(N log2N), which is slower if logN > D.
We could also just pick a random point to split on. This is
equivalent to just calling add repeatedly on each point, so
it has the same quadratic worst case running time.
Luckily, there is a way to find the median in linear time!
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Runtime Analysis, continued

This optimization shaves off a D factor, so our running
time goes from O(D2N logN) to O(DN logN) where the
runtime is dominated by the D initial O(N logN) sorts.
Recall that we need to do the sorts to find the median
efficiently. Can we shave off another D factor if we find the
median a different way?
We could maintain a single list of points, and simply sort
this list on the cutting dimension at each level. That adds
a logN factor at every level, so the running time is
O(N log2N), which is slower if logN > D.

We could also just pick a random point to split on. This is
equivalent to just calling add repeatedly on each point, so
it has the same quadratic worst case running time.
Luckily, there is a way to find the median in linear time!
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Runtime Analysis, continued

This optimization shaves off a D factor, so our running
time goes from O(D2N logN) to O(DN logN) where the
runtime is dominated by the D initial O(N logN) sorts.
Recall that we need to do the sorts to find the median
efficiently. Can we shave off another D factor if we find the
median a different way?
We could maintain a single list of points, and simply sort
this list on the cutting dimension at each level. That adds
a logN factor at every level, so the running time is
O(N log2N), which is slower if logN > D.
We could also just pick a random point to split on. This is
equivalent to just calling add repeatedly on each point, so
it has the same quadratic worst case running time.

Luckily, there is a way to find the median in linear time!



Huan

Color
Quantization

k-means
clustering
k-means

k-means++

Practical
Example

kd-Trees
Construction

Median-based
Construction

Finding
Medians
Select

Median of
Medians

Decision Tree

kd-Trees,
Revisited
Nearest Neighbor
Queries

References

Runtime Analysis, continued

This optimization shaves off a D factor, so our running
time goes from O(D2N logN) to O(DN logN) where the
runtime is dominated by the D initial O(N logN) sorts.
Recall that we need to do the sorts to find the median
efficiently. Can we shave off another D factor if we find the
median a different way?
We could maintain a single list of points, and simply sort
this list on the cutting dimension at each level. That adds
a logN factor at every level, so the running time is
O(N log2N), which is slower if logN > D.
We could also just pick a random point to split on. This is
equivalent to just calling add repeatedly on each point, so
it has the same quadratic worst case running time.
Luckily, there is a way to find the median in linear time!
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Order Statistics

The median is a special case of the problem of order statistics.

Order Statistics

The ith order statistic for a list l of n elements is the ith
smallest value, i.e. sorted(l)[i].

Special cases

For example, i = 0 is the minimum and i = n − 1 is the
maximum.

When n is odd, then the median is uniquely at i = bn2c.
When n is even, then the median is ambiguous, with the
“upper median” occurring at n

2 and “lower median”
occurring at n

2 − 1.
Since bn2c is always a median regardless of the parity of n,
for simplicity “median” will refer to the upper median.
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Select Algorithm

We also initially assume that each element is distinct,
although we will see what to do if that is not the case.

Suppose we are trying to find the ith order statistic.
The approach will be very similar to quicksort. We pick a
pivot value, and split the list into two halves, the left with
values less than the pivot and the right with values greater
than the pivot (since we assume the elements are distinct,
there are no elements equal to the pivot).
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The approach will be very similar to quicksort. We pick a
pivot value, and split the list into two halves, the left with
values less than the pivot and the right with values greater
than the pivot (since we assume the elements are distinct,
there are no elements equal to the pivot).
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Select Algorithm

We also initially assume that each element is distinct,
although we will see what to do if that is not the case.
Suppose we are trying to find the ith order statistic.
The approach will be very similar to quicksort. We pick a
pivot value, and split the list into two halves, the left with
values less than the pivot and the right with values greater
than the pivot (since we assume the elements are distinct,
there are no elements equal to the pivot).
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Select Algorithm, continued

Look at the size of the left list, which I’ll call k .

If k = i , then the pivot is greater than i elements, so it is
the ith order statistic by definition. Return the pivot.
If i < k , then our pivot is too big, so we recur on the left
list. We keep the same value of i .
Finally, if i > k , then our pivot is not big enough, so we
recur on the right list. Unlike the left case, we already
“beat” k elements so we need to look for the (i − k − 1)th
element in the right list, where the 1 comes from the pivot.
For simplicity, we use additional memory although the
algorithm is able to be done in-place.
We also don’t technically need a base case, but if the
length is 1, there’s only one possible element to return.
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Look at the size of the left list, which I’ll call k .
If k = i , then the pivot is greater than i elements, so it is
the ith order statistic by definition. Return the pivot.

If i < k , then our pivot is too big, so we recur on the left
list. We keep the same value of i .
Finally, if i > k , then our pivot is not big enough, so we
recur on the right list. Unlike the left case, we already
“beat” k elements so we need to look for the (i − k − 1)th
element in the right list, where the 1 comes from the pivot.
For simplicity, we use additional memory although the
algorithm is able to be done in-place.
We also don’t technically need a base case, but if the
length is 1, there’s only one possible element to return.
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Look at the size of the left list, which I’ll call k .
If k = i , then the pivot is greater than i elements, so it is
the ith order statistic by definition. Return the pivot.
If i < k , then our pivot is too big, so we recur on the left
list. We keep the same value of i .

Finally, if i > k , then our pivot is not big enough, so we
recur on the right list. Unlike the left case, we already
“beat” k elements so we need to look for the (i − k − 1)th
element in the right list, where the 1 comes from the pivot.
For simplicity, we use additional memory although the
algorithm is able to be done in-place.
We also don’t technically need a base case, but if the
length is 1, there’s only one possible element to return.
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Select Algorithm, continued

Look at the size of the left list, which I’ll call k .
If k = i , then the pivot is greater than i elements, so it is
the ith order statistic by definition. Return the pivot.
If i < k , then our pivot is too big, so we recur on the left
list. We keep the same value of i .
Finally, if i > k , then our pivot is not big enough, so we
recur on the right list. Unlike the left case, we already
“beat” k elements so we need to look for the (i − k − 1)th
element in the right list, where the 1 comes from the pivot.

For simplicity, we use additional memory although the
algorithm is able to be done in-place.
We also don’t technically need a base case, but if the
length is 1, there’s only one possible element to return.
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Select Algorithm, continued

Look at the size of the left list, which I’ll call k .
If k = i , then the pivot is greater than i elements, so it is
the ith order statistic by definition. Return the pivot.
If i < k , then our pivot is too big, so we recur on the left
list. We keep the same value of i .
Finally, if i > k , then our pivot is not big enough, so we
recur on the right list. Unlike the left case, we already
“beat” k elements so we need to look for the (i − k − 1)th
element in the right list, where the 1 comes from the pivot.
For simplicity, we use additional memory although the
algorithm is able to be done in-place.

We also don’t technically need a base case, but if the
length is 1, there’s only one possible element to return.
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Select Algorithm, continued

Look at the size of the left list, which I’ll call k .
If k = i , then the pivot is greater than i elements, so it is
the ith order statistic by definition. Return the pivot.
If i < k , then our pivot is too big, so we recur on the left
list. We keep the same value of i .
Finally, if i > k , then our pivot is not big enough, so we
recur on the right list. Unlike the left case, we already
“beat” k elements so we need to look for the (i − k − 1)th
element in the right list, where the 1 comes from the pivot.
For simplicity, we use additional memory although the
algorithm is able to be done in-place.
We also don’t technically need a base case, but if the
length is 1, there’s only one possible element to return.
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Select, code

split and pivot selection
def split(l: list, x: float) -> tuple:

""" Splits the list by a value x. """
left, right = [], []
for v in l:

# if the value is equal to the cutoff,
# add it to the right side
(left if v < x else right).append(v)

return left, right

def pivot(l: list) -> float:
""" Picks a value as a pivot. """
return l[0]
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Select, code

Algorithm Select

def select(l: list, i: int):
""" Returns sorted(l)[i]. """
if len(l) == 1: # base case

return l[0]
left, right = split(l, pivot(l))
k = len(left)
if i == k: # pivot is the answer

return right[0]
# recur on sublist and get rid of pivot
return select(left, i) if i < k else \

select(right, i - k - 1)
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Select, with duplicate elements

If there are duplicates, we could just run the standard
select algorithm as usual.
It has a problem though: it is sometimes impossible to get
a good split if the pivot value has many duplicates — the
many duplicates carry over, slowing down the algorithm.
With our implementation, it could even infinitely recur!

Instead, we partition the list into three sublists: one for
elements less than the pivot, one for elements equal to the
pivot, and one for elements greater than the pivot (left,
mid, and right, respectively).
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Select, with duplicate elements

If there are duplicates, we could just run the standard
select algorithm as usual.
It has a problem though: it is sometimes impossible to get
a good split if the pivot value has many duplicates — the
many duplicates carry over, slowing down the algorithm.
With our implementation, it could even infinitely recur!
Instead, we partition the list into three sublists: one for
elements less than the pivot, one for elements equal to the
pivot, and one for elements greater than the pivot (left,
mid, and right, respectively).
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Select, with duplicate elements, continued

Call the length of the left sublist k and the mid sublist m.
Everything is exactly the same except instead of seeing
whether i = k , we can return the pivot if
k ≤ i ≤ k +m − 1, as the pivot value takes up more
indexes: the first pivot value is greater than k elements,
the second is greater than k + 1, and so on (if m = 1, this
reduces to i = k , like in the distinct case).

Also, if we recur on the right sublist, we update i to
i − k −m, since we remove k elements in the left sublist
and m elements in the middle list (if m = 1, this reduces
to i − k − 1 like in the distinct case).
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Select, with duplicate elements, continued

Call the length of the left sublist k and the mid sublist m.
Everything is exactly the same except instead of seeing
whether i = k , we can return the pivot if
k ≤ i ≤ k +m − 1, as the pivot value takes up more
indexes: the first pivot value is greater than k elements,
the second is greater than k + 1, and so on (if m = 1, this
reduces to i = k , like in the distinct case).
Also, if we recur on the right sublist, we update i to
i − k −m, since we remove k elements in the left sublist
and m elements in the middle list (if m = 1, this reduces
to i − k − 1 like in the distinct case).
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Select with duplicates, code

split modified to deal with duplicates
def split(l: list, x: float) -> tuple:

""" Splits the list by a particular value x. """
left, mid, right = [], [], []
for v in l:

(left if v < x else \
right if v > x else mid).append(v)

return left, mid, right
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Select with duplicates, code

Algorithm Select, modified to deal with duplicate elements

def select(l: list, i: int):
""" Returns sorted(l)[i]. """
if len(l) == 1: # base case

return l[0]
left, mid, right = split(l, pivot(l))
k, m = len(left), len(mid)
if k <= i <= k + m - 1: # pivot is the answer

return mid[0]
# recur on sublist and get rid of pivot
return select(left, i) if i < k else \

select(right, i - k - m)
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Runtime Analysis

The runtime is analyzed very similarly to quicksort or
kd-tree construction — pivot selection is very important.
In the best case, we split the list perfectly in half every
iteration, so we take N + 1

2N + 1
4N + . . . = 2N → O(N).

In the worst case, we remove a single element every time,
taking N + (N − 1) + (N − 2) + . . . = N(N+1)

2 → O(N2).
Importantly, as long as we split the list by some multiple
less than 1, the geometric series will converge to O(N).
For example, for a 0.9 split where we remove 10%:

N + 0.9N + 0.81N + . . . =
1

1− 0.9
N = 10N → O(N)

Is there a heuristic that guarantees a constant multiple?
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The runtime is analyzed very similarly to quicksort or
kd-tree construction — pivot selection is very important.
In the best case, we split the list perfectly in half every
iteration, so we take N + 1
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4N + . . . = 2N → O(N).

In the worst case, we remove a single element every time,
taking N + (N − 1) + (N − 2) + . . . = N(N+1)

2 → O(N2).

Importantly, as long as we split the list by some multiple
less than 1, the geometric series will converge to O(N).
For example, for a 0.9 split where we remove 10%:

N + 0.9N + 0.81N + . . . =
1

1− 0.9
N = 10N → O(N)

Is there a heuristic that guarantees a constant multiple?
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For example, for a 0.9 split where we remove 10%:

N + 0.9N + 0.81N + . . . =
1

1− 0.9
N = 10N → O(N)

Is there a heuristic that guarantees a constant multiple?



Huan

Color
Quantization

k-means
clustering
k-means

k-means++

Practical
Example

kd-Trees
Construction

Median-based
Construction

Finding
Medians
Select

Median of
Medians

Decision Tree

kd-Trees,
Revisited
Nearest Neighbor
Queries

References

Runtime Analysis

The runtime is analyzed very similarly to quicksort or
kd-tree construction — pivot selection is very important.
In the best case, we split the list perfectly in half every
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4N + . . . = 2N → O(N).

In the worst case, we remove a single element every time,
taking N + (N − 1) + (N − 2) + . . . = N(N+1)

2 → O(N2).
Importantly, as long as we split the list by some multiple
less than 1, the geometric series will converge to O(N).
For example, for a 0.9 split where we remove 10%:

N + 0.9N + 0.81N + . . . =
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Median of Medians

Median of Medians

1 Divide the list into groups of 5, putting the remainder in a
group of length n mod 5.

2 Find the median of each group of 5 with any method
(including sorting)

3 Find the median of the medians found in step 2
4 Use this median as a pivot in select
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Algorithm Median of medians

def median(l: list) -> float:
""" Returns the median of l, via a sort. """
return sorted(l)[len(l)//2]

def pivot(l: list) -> float:
""" Uses the median of medians as a pivot. """
medians = [median(l[5*i: 5*(i + 1)])

for i in range(-(-len(l)//5))]
return select(medians, len(medians)//2)
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Runtime Analysis

Why does this work? Call the median of medians x .

Half of the groups’ medians must be less or equal to x by
definition of the median. For each of these groups, the median
and the two elements in the group less than the median are also
less than or equal to x , contributing 3 elements per group.
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Runtime Analysis, continued

There are dn5e groups in total, but for simplicity we ignore
the group with x and the group with less than 5 elements,
so the number of elements less than x is at least
3(d12d

n
5ee − 2) or bounded below by 3n

10 − 6.

Thus, in the worst case we recur on a list of size
n − (3n10 − 6) = 7n

10 + 6.
This is basically a constant multiple!
Don’t get too excited just yet, we added an additional
recursive step because pivot calls select to find the
median of a list of size dn5e.
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Runtime Analysis, continued

There are dn5e groups in total, but for simplicity we ignore
the group with x and the group with less than 5 elements,
so the number of elements less than x is at least
3(d12d

n
5ee − 2) or bounded below by 3n

10 − 6.
Thus, in the worst case we recur on a list of size
n − (3n10 − 6) = 7n

10 + 6.

This is basically a constant multiple!
Don’t get too excited just yet, we added an additional
recursive step because pivot calls select to find the
median of a list of size dn5e.
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Runtime Analysis, continued

There are dn5e groups in total, but for simplicity we ignore
the group with x and the group with less than 5 elements,
so the number of elements less than x is at least
3(d12d

n
5ee − 2) or bounded below by 3n

10 − 6.
Thus, in the worst case we recur on a list of size
n − (3n10 − 6) = 7n

10 + 6.
This is basically a constant multiple!

Don’t get too excited just yet, we added an additional
recursive step because pivot calls select to find the
median of a list of size dn5e.
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Runtime Analysis, continued

There are dn5e groups in total, but for simplicity we ignore
the group with x and the group with less than 5 elements,
so the number of elements less than x is at least
3(d12d

n
5ee − 2) or bounded below by 3n

10 − 6.
Thus, in the worst case we recur on a list of size
n − (3n10 − 6) = 7n

10 + 6.
This is basically a constant multiple!
Don’t get too excited just yet, we added an additional
recursive step because pivot calls select to find the
median of a list of size dn5e.
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Runtime Analysis, continued

First of all, we can decompose a list into groups of 5 and
compute the median of each group in linear time, since a
sort of a list of constant length is O(1) by definition, and
we perform dn5e such sorts.

Thus, this median decomposition adds no asymptotic
overhead to the existing linear time partition step.
If T (n) is the runtime of the algorithm on a list of size n,
it fulfills the recurrence relation

T (n) = O(n) + T (dn
5
e) + T (

7n
10

+ 6)

Is T O(n)? According to Introduction to Algorithms, yes!
We can find the median of a list in linear time.
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Runtime Analysis, continued

First of all, we can decompose a list into groups of 5 and
compute the median of each group in linear time, since a
sort of a list of constant length is O(1) by definition, and
we perform dn5e such sorts.
Thus, this median decomposition adds no asymptotic
overhead to the existing linear time partition step.

If T (n) is the runtime of the algorithm on a list of size n,
it fulfills the recurrence relation

T (n) = O(n) + T (dn
5
e) + T (

7n
10

+ 6)

Is T O(n)? According to Introduction to Algorithms, yes!
We can find the median of a list in linear time.
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Runtime Analysis, continued

First of all, we can decompose a list into groups of 5 and
compute the median of each group in linear time, since a
sort of a list of constant length is O(1) by definition, and
we perform dn5e such sorts.
Thus, this median decomposition adds no asymptotic
overhead to the existing linear time partition step.
If T (n) is the runtime of the algorithm on a list of size n,
it fulfills the recurrence relation

T (n) = O(n) + T (dn
5
e) + T (

7n
10

+ 6)

Is T O(n)? According to Introduction to Algorithms, yes!
We can find the median of a list in linear time.
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Runtime Analysis, continued

First of all, we can decompose a list into groups of 5 and
compute the median of each group in linear time, since a
sort of a list of constant length is O(1) by definition, and
we perform dn5e such sorts.
Thus, this median decomposition adds no asymptotic
overhead to the existing linear time partition step.
If T (n) is the runtime of the algorithm on a list of size n,
it fulfills the recurrence relation

T (n) = O(n) + T (dn
5
e) + T (

7n
10

+ 6)

Is T O(n)? According to Introduction to Algorithms, yes!

We can find the median of a list in linear time.
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Runtime Analysis, continued

First of all, we can decompose a list into groups of 5 and
compute the median of each group in linear time, since a
sort of a list of constant length is O(1) by definition, and
we perform dn5e such sorts.
Thus, this median decomposition adds no asymptotic
overhead to the existing linear time partition step.
If T (n) is the runtime of the algorithm on a list of size n,
it fulfills the recurrence relation

T (n) = O(n) + T (dn
5
e) + T (

7n
10

+ 6)

Is T O(n)? According to Introduction to Algorithms, yes!
We can find the median of a list in linear time.
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Decision Tree

In practice, there’s a large constant factor that could be
reduced if we could find the median of a size 5 list quickly.

We could model this problem as a decision tree, where
each internal node contains a comparison, represented by
two indexes to compare in the array, i.e. a[i] > a[j].
If the comparison is false, we recur on the left node and if
the comparison is true, we recur on the right node.
We continue until we reach a leaf node, which simply
contains the index of the median.
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If the comparison is false, we recur on the left node and if
the comparison is true, we recur on the right node.

We continue until we reach a leaf node, which simply
contains the index of the median.



Huan

Color
Quantization

k-means
clustering
k-means

k-means++

Practical
Example

kd-Trees
Construction

Median-based
Construction

Finding
Medians
Select

Median of
Medians

Decision Tree

kd-Trees,
Revisited
Nearest Neighbor
Queries

References

Decision Tree

In practice, there’s a large constant factor that could be
reduced if we could find the median of a size 5 list quickly.
We could model this problem as a decision tree, where
each internal node contains a comparison, represented by
two indexes to compare in the array, i.e. a[i] > a[j].
If the comparison is false, we recur on the left node and if
the comparison is true, we recur on the right node.
We continue until we reach a leaf node, which simply
contains the index of the median.
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Decision Tree, construction

Suppose we build a decision tree to find the median of a
particular list containing n arbitrary and distinct elements.

Claim: If the decision tree works on all n! permutations of
this list, then it works on any list of n elements, even lists
that contain duplicate elements.
Intuitively, we don’t care about the actual values in the
lists; if the relative comparisons between the indexes are
the same, then we will take the same path down the tree.
A set of “relative comparisons” defines an ordering of the
list, or a permutation. Thus, all lists have been “covered”
by a corresponding permutation of our particular list.
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Suppose we build a decision tree to find the median of a
particular list containing n arbitrary and distinct elements.
Claim: If the decision tree works on all n! permutations of
this list, then it works on any list of n elements, even lists
that contain duplicate elements.

Intuitively, we don’t care about the actual values in the
lists; if the relative comparisons between the indexes are
the same, then we will take the same path down the tree.
A set of “relative comparisons” defines an ordering of the
list, or a permutation. Thus, all lists have been “covered”
by a corresponding permutation of our particular list.
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particular list containing n arbitrary and distinct elements.
Claim: If the decision tree works on all n! permutations of
this list, then it works on any list of n elements, even lists
that contain duplicate elements.
Intuitively, we don’t care about the actual values in the
lists; if the relative comparisons between the indexes are
the same, then we will take the same path down the tree.

A set of “relative comparisons” defines an ordering of the
list, or a permutation. Thus, all lists have been “covered”
by a corresponding permutation of our particular list.
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Suppose we build a decision tree to find the median of a
particular list containing n arbitrary and distinct elements.
Claim: If the decision tree works on all n! permutations of
this list, then it works on any list of n elements, even lists
that contain duplicate elements.
Intuitively, we don’t care about the actual values in the
lists; if the relative comparisons between the indexes are
the same, then we will take the same path down the tree.
A set of “relative comparisons” defines an ordering of the
list, or a permutation. Thus, all lists have been “covered”
by a corresponding permutation of our particular list.
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Decision Tree, construction

What about duplicate elements?
I don’t care how duplicate values compare to each other,
because that just determines the relative order of
duplicates, which is arbitrary. I can just pick any
permutation that is correct for distinct value comparisons.
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Decision Tree, construction example

The simplest particular list to pick is a = [0, 1, 2, 3, 4].

Suppose we have a decision tree which correctly identifies
the median index for every permutation of a. Will this give
the correct median for x = [0, 0.3, 0.2, 0.4, 0.1]?
Well, we can define the mapping 0→ 0, 0.1→ 1, and so
on. We know the decision tree works for [0, 3, 2, 4, 1], a
permutation of a. Thus, it should work for x .
In general, we can construct this mapping by sorting the list
and mapping the value at x [0] to 0, x [1] to 1, and so on.
Thus, any list x has a corresponding permutation of a with
the same relative comparisons between any pair of indexes.
If x has duplicate entries, then we can still apply sorting to
generate a mapping. Of course, the corresponding
permutation of a won’t have the same relative
comparisons, but this is acceptable because relative
comparisons between duplicate elements is arbitrary.
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The simplest particular list to pick is a = [0, 1, 2, 3, 4].
Suppose we have a decision tree which correctly identifies
the median index for every permutation of a. Will this give
the correct median for x = [0, 0.3, 0.2, 0.4, 0.1]?

Well, we can define the mapping 0→ 0, 0.1→ 1, and so
on. We know the decision tree works for [0, 3, 2, 4, 1], a
permutation of a. Thus, it should work for x .
In general, we can construct this mapping by sorting the list
and mapping the value at x [0] to 0, x [1] to 1, and so on.
Thus, any list x has a corresponding permutation of a with
the same relative comparisons between any pair of indexes.
If x has duplicate entries, then we can still apply sorting to
generate a mapping. Of course, the corresponding
permutation of a won’t have the same relative
comparisons, but this is acceptable because relative
comparisons between duplicate elements is arbitrary.
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The simplest particular list to pick is a = [0, 1, 2, 3, 4].
Suppose we have a decision tree which correctly identifies
the median index for every permutation of a. Will this give
the correct median for x = [0, 0.3, 0.2, 0.4, 0.1]?
Well, we can define the mapping 0→ 0, 0.1→ 1, and so
on. We know the decision tree works for [0, 3, 2, 4, 1], a
permutation of a. Thus, it should work for x .

In general, we can construct this mapping by sorting the list
and mapping the value at x [0] to 0, x [1] to 1, and so on.
Thus, any list x has a corresponding permutation of a with
the same relative comparisons between any pair of indexes.
If x has duplicate entries, then we can still apply sorting to
generate a mapping. Of course, the corresponding
permutation of a won’t have the same relative
comparisons, but this is acceptable because relative
comparisons between duplicate elements is arbitrary.
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The simplest particular list to pick is a = [0, 1, 2, 3, 4].
Suppose we have a decision tree which correctly identifies
the median index for every permutation of a. Will this give
the correct median for x = [0, 0.3, 0.2, 0.4, 0.1]?
Well, we can define the mapping 0→ 0, 0.1→ 1, and so
on. We know the decision tree works for [0, 3, 2, 4, 1], a
permutation of a. Thus, it should work for x .
In general, we can construct this mapping by sorting the list
and mapping the value at x [0] to 0, x [1] to 1, and so on.

Thus, any list x has a corresponding permutation of a with
the same relative comparisons between any pair of indexes.
If x has duplicate entries, then we can still apply sorting to
generate a mapping. Of course, the corresponding
permutation of a won’t have the same relative
comparisons, but this is acceptable because relative
comparisons between duplicate elements is arbitrary.
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The simplest particular list to pick is a = [0, 1, 2, 3, 4].
Suppose we have a decision tree which correctly identifies
the median index for every permutation of a. Will this give
the correct median for x = [0, 0.3, 0.2, 0.4, 0.1]?
Well, we can define the mapping 0→ 0, 0.1→ 1, and so
on. We know the decision tree works for [0, 3, 2, 4, 1], a
permutation of a. Thus, it should work for x .
In general, we can construct this mapping by sorting the list
and mapping the value at x [0] to 0, x [1] to 1, and so on.
Thus, any list x has a corresponding permutation of a with
the same relative comparisons between any pair of indexes.

If x has duplicate entries, then we can still apply sorting to
generate a mapping. Of course, the corresponding
permutation of a won’t have the same relative
comparisons, but this is acceptable because relative
comparisons between duplicate elements is arbitrary.
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The simplest particular list to pick is a = [0, 1, 2, 3, 4].
Suppose we have a decision tree which correctly identifies
the median index for every permutation of a. Will this give
the correct median for x = [0, 0.3, 0.2, 0.4, 0.1]?
Well, we can define the mapping 0→ 0, 0.1→ 1, and so
on. We know the decision tree works for [0, 3, 2, 4, 1], a
permutation of a. Thus, it should work for x .
In general, we can construct this mapping by sorting the list
and mapping the value at x [0] to 0, x [1] to 1, and so on.
Thus, any list x has a corresponding permutation of a with
the same relative comparisons between any pair of indexes.
If x has duplicate entries, then we can still apply sorting to
generate a mapping. Of course, the corresponding
permutation of a won’t have the same relative
comparisons, but this is acceptable because relative
comparisons between duplicate elements is arbitrary.
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Decision Tree, properties

There are two important properties of this decision tree:
1 The height of the tree, which gives the number of

comparisons in the worst case.
2 The expected number of comparisons, assuming each

permutation of the list occurs with equal probability.

Of course, we want to minimize both height and expected
number of comparisons. How do we actually build such a
decision tree?
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Decision Tree, properties

There are two important properties of this decision tree:
1 The height of the tree, which gives the number of

comparisons in the worst case.
2 The expected number of comparisons, assuming each

permutation of the list occurs with equal probability.
Of course, we want to minimize both height and expected
number of comparisons. How do we actually build such a
decision tree?
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Decision Tree, construction

Likely NP-hard in general, at least decision trees in a
machine learning context greedily maximize information
gain at each level instead of trying to globally optimize.

We could just generate every possible decision tree. N = 5,
how hard could it be?
Well, I have no clue because it takes at least 30 minutes,
at which point I terminated the program.
We could prune trees by considering isomorphic trees, that
is, we can take advantage of symmetry (for example, the
very first comparison is necessarily symmetric, since there
is no difference between any two pair of indexes).
Instead, we’ll use the greedy approach, and pick
comparisons that split the permutations between the left
and right subtrees as evenly as possible (very similar to
kd-tree construction).
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Likely NP-hard in general, at least decision trees in a
machine learning context greedily maximize information
gain at each level instead of trying to globally optimize.
We could just generate every possible decision tree. N = 5,
how hard could it be?

Well, I have no clue because it takes at least 30 minutes,
at which point I terminated the program.
We could prune trees by considering isomorphic trees, that
is, we can take advantage of symmetry (for example, the
very first comparison is necessarily symmetric, since there
is no difference between any two pair of indexes).
Instead, we’ll use the greedy approach, and pick
comparisons that split the permutations between the left
and right subtrees as evenly as possible (very similar to
kd-tree construction).
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Decision Tree, construction

Likely NP-hard in general, at least decision trees in a
machine learning context greedily maximize information
gain at each level instead of trying to globally optimize.
We could just generate every possible decision tree. N = 5,
how hard could it be?
Well, I have no clue because it takes at least 30 minutes,
at which point I terminated the program.

We could prune trees by considering isomorphic trees, that
is, we can take advantage of symmetry (for example, the
very first comparison is necessarily symmetric, since there
is no difference between any two pair of indexes).
Instead, we’ll use the greedy approach, and pick
comparisons that split the permutations between the left
and right subtrees as evenly as possible (very similar to
kd-tree construction).
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Decision Tree, construction

Likely NP-hard in general, at least decision trees in a
machine learning context greedily maximize information
gain at each level instead of trying to globally optimize.
We could just generate every possible decision tree. N = 5,
how hard could it be?
Well, I have no clue because it takes at least 30 minutes,
at which point I terminated the program.
We could prune trees by considering isomorphic trees, that
is, we can take advantage of symmetry (for example, the
very first comparison is necessarily symmetric, since there
is no difference between any two pair of indexes).

Instead, we’ll use the greedy approach, and pick
comparisons that split the permutations between the left
and right subtrees as evenly as possible (very similar to
kd-tree construction).
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Decision Tree, construction

Likely NP-hard in general, at least decision trees in a
machine learning context greedily maximize information
gain at each level instead of trying to globally optimize.
We could just generate every possible decision tree. N = 5,
how hard could it be?
Well, I have no clue because it takes at least 30 minutes,
at which point I terminated the program.
We could prune trees by considering isomorphic trees, that
is, we can take advantage of symmetry (for example, the
very first comparison is necessarily symmetric, since there
is no difference between any two pair of indexes).
Instead, we’ll use the greedy approach, and pick
comparisons that split the permutations between the left
and right subtrees as evenly as possible (very similar to
kd-tree construction).
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Decision Tree, application

Once we have a decision tree, we can render it into Python.
median

def median(l: list) -> float:
""" Computes the median of l, if len(l) == 5. """
a, b, c, d, e = l
return (((((((c if b < c else b) if b < d else d) if d < e else ((c if b < c else b) if

b < e else e)) if c < e else (((e if b < e else b) if b < c else c) if a < e else
(b if b < c else c))) if a < c else (((b if b < d else (d if a < d else a)) if b <
e else ((d if a < d else a) if d < e else e)) if a < e else (a if a < d else ((e if
d < e else d) if c < e else d)))) if c < d else (((((d if b < d else b) if b < c
else c) if c < e else ((d if b < d else b) if b < e else e)) if d < e else (((e if
b < e else b) if b < d else d) if a < e else ((b if b < d else d) if b < c else
d))) if a < d else (((b if b < c else (c if a < c else a)) if b < e else ((c if a <
c else a) if c < e else e)) if a < e else (a if a < c else (e if c < e else c)))))
if a < b else (((((c if c < e else e) if a < c else a) if a < e else ((e if c < e
else (a if a < c else c)) if b < e else ((a if a < c else c) if b < c else b))) if
a < d else (((d if b < c else (d if b < d else b)) if a < e else (d if b < d else
(b if b < e else e))) if d < e else ((e if b < e else (b if b < d else d)) if c < e
else (c if b < c else (b if b < d else d))))) if c < d else ((((d if c < e else (d
if d < e else e)) if a < d else a) if a < e else ((e if d < e else (a if a < d else
d)) if b < e else ((a if a < d else d) if b < d else b))) if a < c else (((c if b <
c else b) if a < e else (c if b < c else (b if b < e else e))) if c < e else ((e if
b < e else (b if b < c else c)) if d < e else (d if b < d else (b if b < c else
c)))))))

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
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Decision Tree, disappointment

Decision trees use on average 1.5 less comparisons than
sorting, and at most 7 comparisons to find the median:

Average value: 6.267, max depth: 7
Python sorted comparisions: 7.775

According to timeit, decision trees win over sorting!
ternary: 0.266674

sort: 0.380404

The difference is magnified with PyPy, about 26x faster:
ternary: 0.002689

sort: 0.070296

In practice, however, decision trees are slower.

https://docs.python.org/3/library/timeit.html


Huan

Color
Quantization

k-means
clustering
k-means

k-means++

Practical
Example

kd-Trees
Construction

Median-based
Construction

Finding
Medians
Select

Median of
Medians

Decision Tree

kd-Trees,
Revisited
Nearest Neighbor
Queries

References

Table of Contents

1 Color Quantization
2 k-means clustering

k-means
k-means++
Practical Example

3 kd-Trees
Construction
Median-based Construction

4 Finding Medians
Select
Median of Medians
Decision Tree

5 kd-Trees, Revisited
Nearest Neighbor Queries

6 References



Huan

Color
Quantization

k-means
clustering
k-means

k-means++

Practical
Example

kd-Trees
Construction

Median-based
Construction

Finding
Medians
Select

Median of
Medians

Decision Tree

kd-Trees,
Revisited
Nearest Neighbor
Queries

References

kd-Tree construction

Back to kd-trees.
In order to use the linear time median algorithm derived in
the last section in kd-tree construction, we first generate a
list of scalars from our list of points by indexing each point
at the current cutting dimension.
We then apply our median algorithm, and obtain a median
value in linear time. Finally, we iterate through the points
again, and pick any point with the median value along the
cutting dimension.

Our build complexity is now O(n log n), since we avoid the
initial D sorts. D also no longer appears in the complexity.
Claim: This complexity for (optimal) kd-tree construction
is asymptotically optimal.
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kd-Tree construction

Back to kd-trees.
In order to use the linear time median algorithm derived in
the last section in kd-tree construction, we first generate a
list of scalars from our list of points by indexing each point
at the current cutting dimension.
We then apply our median algorithm, and obtain a median
value in linear time. Finally, we iterate through the points
again, and pick any point with the median value along the
cutting dimension.
Our build complexity is now O(n log n), since we avoid the
initial D sorts. D also no longer appears in the complexity.
Claim: This complexity for (optimal) kd-tree construction
is asymptotically optimal.
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Nearest Neighbor

Nearest Neighbor Query

A nearest neighbor query is given a point Q and a set of points
P , find the closest point to Q in P .

Suppose we build a kd-tree on P .
A kd-tree is helpful in the sense that it gives us spatial
data, as it successively partitions a space by hyperplanes
defined by points in the tree.

We can take advantage of this by conducing a tree search, with
two important modifications:

1 Keep track of the closest point so far, C . Prune subtrees if
they can’t beat this closest point.

2 Search subtrees in a order that maximizes pruning
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Nearest Neighbor Query

A nearest neighbor query is given a point Q and a set of points
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Suppose we build a kd-tree on P .
A kd-tree is helpful in the sense that it gives us spatial
data, as it successively partitions a space by hyperplanes
defined by points in the tree.

We can take advantage of this by conducing a tree search, with
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1 Keep track of the closest point so far, C . Prune subtrees if
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Bounding Boxes

Each subtree has a bounding box, or the minimum and
maximum values it could take on for each dimension.
If the distance between Q and the closest point in this
bounding box is greater than the distance between Q and
C , then there’s no point to search this subtree.

Figure: Justification for pruning subtrees
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Bounding Boxes, distance

Question 1: How do we compute the distance between a
point and a bounding box?
Let the bounding box be a list of tuples, each tuple being
the minimum and maximum value on that dimension.

Bounding Box

The bounding box [(0, 5), (−2, 3)] defines a rectangle in the x-y
plane, where x can be between 0 and 5 and y can be between
-2 and 3.
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Bounding Boxes, distance

As stated previously, the distance between a bounding box
and a point Q is the distance between Q and the closest
point in the bounding box to Q.
We can find this “closest point” by considering each
dimension separately, since in Euclidean distance each
dimension is independent of the others.

Suppose we are on dimension d . We have three cases to
consider:

1 Q[d ] < bb[0], i.e. the point is left of the bounding box. In
this case, we pick bb[0] along this dimension.

2 bb[0] ≤ Q[d ] ≤ bb[1], i.e. the point is in bounding box.
We can just use Q[d ] since it is contained.

3 Q[d ] > bb[1], i.e. the point is right of the bounding box.
Similar to the first case, we use bb[1].
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Bounding Boxes, distance

As stated previously, the distance between a bounding box
and a point Q is the distance between Q and the closest
point in the bounding box to Q.
We can find this “closest point” by considering each
dimension separately, since in Euclidean distance each
dimension is independent of the others.
Suppose we are on dimension d . We have three cases to
consider:

1 Q[d ] < bb[0], i.e. the point is left of the bounding box. In
this case, we pick bb[0] along this dimension.

2 bb[0] ≤ Q[d ] ≤ bb[1], i.e. the point is in bounding box.
We can just use Q[d ] since it is contained.

3 Q[d ] > bb[1], i.e. the point is right of the bounding box.
Similar to the first case, we use bb[1].
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Bounding Box distance, code

distance from a bounding box
def distbb(p: tuple, bb: list) -> float:

bbp = tuple(box[0] if x < box[0] else \
(box[1] if x > box[1] else x)
for x, box in zip(p, bb))

return dist(p, bbp)
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Bounding Boxes, computation

Question 2: How do we keep track of bounding boxes?
Well, we could say the initial bounding box at the root is
completely unbounded, i.e. (−∞,∞) on each dimension.
When we traverse the left and right subtrees, we must
have split on some plane.

Maintaining bounding boxes

Suppose we split on the value 5 along cutting dimension 1.
Then for the left subtree we update bb[1] to be (−∞, 5), and
for the right we update bb[1] to be (5,∞).

Note that these bounds are known a posteriori, i.e.
generated online during the nearest neighbor search.
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Bounding Box maintenance, code

update bounding box
def trimbb(bb: list, cd: int, p: int, d: int) -> list:

if len(bb) == 0: return bb
bb = list(list(box) for box in bb)
bb[cd][1 - d] = p[cd]
return bb
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Subtree Order

Lastly, we need to determine the subtree search order.
It makes sense to first visit the subtree we would visit if we
were inserting the point in the kd-tree, i.e. the subtree
which would contain the point.
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Nearest Neighbor, code

Algorithm Nearest Neighbor Query
def __closest(self, t: "kdNode", p: tuple, bb: list) -> tuple:

# bounding box too far away from point
if t is None or distbb(p, bb) > self.best_dist:

return
# update best point
d = dist(p, t.point)
if d < self.best_dist:

self.best, self.best_dist = t.point, d
# visit subtrees in order of distance from p
i, j = t.dir(p), 1 - t.dir(p)
self.__closest(t.child[i], p, trimbb(bb, t.cd, t.point, i))
self.__closest(t.child[j], p, trimbb(bb, t.cd, t.point, j))

def closest(self, p: tuple) -> tuple:
self.best, self.best_dist = None, float("inf")
bb = [[-float("inf"), float("inf")] for d in range(len(p))]
self.__closest(self, p, [] if self.tight_bb else bb)
return self.best
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Runtime Analysis

In the worst case, we need to traverse the entire tree, O(n).
In practice, the runtime is closer to

O( 2d︸︷︷︸
points in the neighborhood

+ log n︸︷︷︸
points “near” query

)

If d is small, this is faster than O(nd) per query with the
naive method of searching every point.

Note that we introduce another d factor when trimming
the bounding boxes.
However, the bounding boxes are the same regardless of
the point we’re traversing the tree on, since the bounding
boxes are a function of the tree, which doesn’t change.
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Runtime Analysis

In the worst case, we need to traverse the entire tree, O(n).
In practice, the runtime is closer to

O( 2d︸︷︷︸
points in the neighborhood

+ log n︸︷︷︸
points “near” query

)

If d is small, this is faster than O(nd) per query with the
naive method of searching every point.
Note that we introduce another d factor when trimming
the bounding boxes.
However, the bounding boxes are the same regardless of
the point we’re traversing the tree on, since the bounding
boxes are a function of the tree, which doesn’t change.
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Bounding Box, tight

We can pre-compute bounding boxes, also taking
advantage of “tighter” boxes.
The bounding boxes generated by the plane trim method
generate boxes that are too big — the real bounds are
determined by the extrema of the points contained in the
subtree, not just the path to the subtree.
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Bounding Box, tight

Figure: Difference between the default (in red) and tight bounding
boxes (in green). Subtree is circled in red.
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Bounding Box, tight, computation

The observation is that if we have a bounding box for both
children of a node, we can merge these efficiently, since going
up the tree means the bounding boxes join together.
We have 3 cases:

1 If we’re a leaf, the only point we contain is the leaf’s point.
This serves as our bounding box (it just contains the
point).

2 If we have exactly one child, then we copy its bounding box
and add the current node’s point as well.

3 If we have two children, we merge their bounding boxes
and also add the current node’s point.
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Bounding Box, tight, code

Algorithm Tight bounding boxes
def tighten(self, t: "KdNode"=None) -> None:

if t is None: t = self # called with None, set to the root
l, r, t.tight_bb = t.child[0], t.child[1], True
# recur on children
if l is not None: self.tighten(l)
if r is not None: self.tighten(r)
# leaf node, box is just the singular point
if l is None and r is None:

t.bb = [(t.point[d], t.point[d]) for d in range(t.D)]
# one child, inherit box of child
elif l is None or r is None:

t.bb = l.bb if l is not None else r.bb
t.bb = [(min(box[0], v), max(box[1], v))

for box, v in zip(t.bb, t.point)] # add point
# two children, combine boxes
else:

t.bb = [(min(bbl[0], bbr[0], v), max(bbl[1], bbr[1], v))
for bbl, bbr, v in zip(l.bb, r.bb, t.point)]
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Bounding Box, tight, runtime analysis

After constructing a kd-tree, we can run tighten on the
tree to generate bounding boxes for each node.

tighten runs in O(ND) since we visit each node in the
tree, and at each node we do O(D) operations to do
accounting on the bounding box.
We assume that logN > D or N > 2D , if D is very large
or N very small then kd-trees are not a good choice. Thus,
tighten is dominated by the O(N logN) initial
construction time.
We can run a nearest neighbor search as usual, with the
bounding box trimming logic removed.
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Bounding Box, tight, runtime analysis

After constructing a kd-tree, we can run tighten on the
tree to generate bounding boxes for each node.
tighten runs in O(ND) since we visit each node in the
tree, and at each node we do O(D) operations to do
accounting on the bounding box.

We assume that logN > D or N > 2D , if D is very large
or N very small then kd-trees are not a good choice. Thus,
tighten is dominated by the O(N logN) initial
construction time.
We can run a nearest neighbor search as usual, with the
bounding box trimming logic removed.
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Bounding Box, tight, runtime analysis

After constructing a kd-tree, we can run tighten on the
tree to generate bounding boxes for each node.
tighten runs in O(ND) since we visit each node in the
tree, and at each node we do O(D) operations to do
accounting on the bounding box.
We assume that logN > D or N > 2D , if D is very large
or N very small then kd-trees are not a good choice. Thus,
tighten is dominated by the O(N logN) initial
construction time.

We can run a nearest neighbor search as usual, with the
bounding box trimming logic removed.
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Bounding Box, tight, runtime analysis

After constructing a kd-tree, we can run tighten on the
tree to generate bounding boxes for each node.
tighten runs in O(ND) since we visit each node in the
tree, and at each node we do O(D) operations to do
accounting on the bounding box.
We assume that logN > D or N > 2D , if D is very large
or N very small then kd-trees are not a good choice. Thus,
tighten is dominated by the O(N logN) initial
construction time.
We can run a nearest neighbor search as usual, with the
bounding box trimming logic removed.
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Nearest Neighbor, code

Algorithm Nearest Neighbor Query with tight bounds
def __closest(self, t: "kdNode", p: tuple) -> tuple:

# bounding box too far away from point
if t is None or distbb(p, t.bb) > self.best_dist:

return
# update best point
d = dist(p, t.point)
if d < self.best_dist:

self.best, self.best_dist = t.point, d
# visit subtrees in order of distance from p
i, j = t.dir(p), 1 - t.dir(p)
self.__closest(t.child[i], p)
self.__closest(t.child[j], p)

def closest(self, p: tuple) -> tuple:
self.best, self.best_dist = None, float("inf")
self.__closest(self, p)
return self.best



Huan

Color
Quantization

k-means
clustering
k-means

k-means++

Practical
Example

kd-Trees
Construction

Median-based
Construction

Finding
Medians
Select

Median of
Medians

Decision Tree

kd-Trees,
Revisited
Nearest Neighbor
Queries

References

Runtime Analysis

First, we save the time to trim bounding boxes, now each
node stores its boxes known a priori.

If we determine the bounding boxes based off the points in
the tree, then it is a subset of the original bounding box.
Thus, the distance between any point and our tight
bounding box must be greater than or equal to the
distance between the point and the original bounding box.
We prune if the distance between the bounding box is
greater than the best distance, so our tight bounding box
can only prune more since it doesn’t change the best
distance found so far.
Pruning more means the search runs even faster.
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Runtime Analysis

First, we save the time to trim bounding boxes, now each
node stores its boxes known a priori.
If we determine the bounding boxes based off the points in
the tree, then it is a subset of the original bounding box.
Thus, the distance between any point and our tight
bounding box must be greater than or equal to the
distance between the point and the original bounding box.
We prune if the distance between the bounding box is
greater than the best distance, so our tight bounding box
can only prune more since it doesn’t change the best
distance found so far.
Pruning more means the search runs even faster.
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Wrapping it All Up

We finally apply kd-trees to speeding up
k-means/k-means++.
Simply build a kd-tree on the centers, re-building every
time the centers change.
Whenever we need to find the closest center to a point, we
do a nearest neighbor query with the kd-tree.

Per iteration, our running time is

O( K logK︸ ︷︷ ︸
kd-tree construction

+ N logK︸ ︷︷ ︸
N nearest-neighbor queries

)

N ≥ K so this is O(N logK ) per iteration, compared to
O(NK ) for the naive algorithm.
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Wrapping it All Up

We finally apply kd-trees to speeding up
k-means/k-means++.
Simply build a kd-tree on the centers, re-building every
time the centers change.
Whenever we need to find the closest center to a point, we
do a nearest neighbor query with the kd-tree.
Per iteration, our running time is

O( K logK︸ ︷︷ ︸
kd-tree construction

+ N logK︸ ︷︷ ︸
N nearest-neighbor queries

)

N ≥ K so this is O(N logK ) per iteration, compared to
O(NK ) for the naive algorithm.
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Tempering Optimism

This is overly optimistic.
1 Building a kd-tree naturally adds more memory

consumption and overhead
2 If D is very large, kd-trees become impractical
3 kd-tree is expected O(logK ), it could be O(K )

TODO: Voronoi diagrams?
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Application of k-means

(a) Original image (b) k = 8 (c) k = 256

Figure: k-means on an image. Can you tell the difference at k = 256?

The difference between naive and kd-trees gets larger as k
increases. For k = 8, kd-trees are roughly 2x slower, and for
k = 256, kd-trees are roughly 2x faster.
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