
Accelerating Exact k-means
Algorithms with Geometric

Reasoning
Close reading of a paper

Stephen Huan
TJ Vision & Graphics Club, January 21, 2021

This paper:

https://dl.acm.org/doi/10.1145/312129.312248

Review: k-means

k-means analysis
K: Number of centers, N: number of points

D: Number of dimensions

I: Number of iterations (hard to know a priori)

For each iteration:

For each point:

Find its nearest centerFind its nearest centerFind its nearest center

For each center:
Compute dist(point, center)

Pick minimum distance center
= O(KD)

= O(INKD), analyze per iteration -> O(NKD)

Compute dist(point, center)

k-means analysis, cont.
● Updating centers to centroid
● Assume we have point -> nearest center from last slide

For each center, go through its points and average.

Note: points may be weighted (duplicates)

[(0, 1), (5, 1), (2, 3), (0, 1), (2, 3)] -> [((0, 1), 2), ((2, 3), 2), ((5, 1), 1)]

= D(S1 + S2 + … + Sn) = O(DN) -> time dominated by assignment

Consider the following...

N = 60,000 pixels

K = 256 (8-bit image)

I = 111 iterations

NKI = 60,000*256*111 > 1.7 billion

1.7*109/1 MHz = 1700 seconds/60 = 30 minutes!

Can we do better?
Yes, kd-trees!

kd-tree, review
● BST insert: compare value against root’s value

○ If less, recur on the left subtree
○ If greater, on the right subtree.

● kd-tree: similar, but node holds point (vector), not scalar
○ Need some way of comparing
○ Pick an arbitrary cutting dimension to compare
○ Cycle through cutting dimensions

● Note: xcd = k defines a hyperplane (high dimensional plane)

Building a kd-tree

● See previous lecture
● O(d2 n log n) “pre-sort”

○ O(d n log n) with careful representation

● O(n log n) “median” if you read too much Introduction to Algorithms
○ Irrespective of dimensionality!
○ High constant factor, however...

● tl;dr fast

Silly CMU, pre-sort is O(d n log n)!

https://activities.tjhsst.edu/computervision/lectures/kmeans_Handout.pdf#page=24
https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/kdrangenn.pdf

mrkd-tree
● “Multi-resolution kd-tree”
● Additional data at each node

○ Bounding box
○ Number of points
○ Centroid

● Can we just annotate a regular kd-tree?

Using the kd-tree
● Can be used to speed up nearest neighbor queries
● ~O(log n + 2d)

○ log n from tree search

○ 2d from nodes “near” the target point

● Build kd-tree on centers and use for queries
● Is this really the best approach?

Comparison
kd-tree on centers

● Few points, K ≤ N
○ In practice, K < 10
○ Can maybe save a K factor vs log K

● Dynamic, centers change every iteration
○ Need to build a new kd-tree

● Easily convert existing algorithm

kd-tree on points

● Many points
○ In practice, N > 100,000
○ Can save time as it’s based on N

● Static, points are the same
○ Can build once and recycle

● Requires a bit of adjustment

<

<
>

Clearly, we should build a kd-tree on the points, not the centers!
How?

This is where the
paper comes in...

Ownership
● Let C be the list of centers, len(C) = K
● Center c “owns” a hyper-rectangle h (kd-node and descendants)

○ Every point in h is closer to c than to any other center
○ “Every point” is really “every point”; not just the ones in the kd-tree
○ Obviously, all points assigned to c

● If we can show c owns h, no need to check points in h
● How to show ownership?

Point to Hyper-rectangle
● Let bb be the bounding box

○ Length is the dimensionality D
○ bb[d] contains the min and max along the dth dimension
○ [(0, 1), (-1, 2)]

● dist(p, bb)?
○ Find the closest point to p in bb, q
○ dist(p, q)

1. p[d] < bb[d][0] -> Take bb[d][0]
2. p[d] > bb[d][1] -> Take bb[d][1]
3. bb[d][0] ≤ p[d] ≤ bb[d][1] -> Take p[d]

Condition #1
● c must have the minimum distance to h

○ If not true, contradiction!
○ Suppose other center c' with dist(c', h) < dist(c, h)
○ Note that dist(c, h) constructive, finds closest point
○ Therefore there’s a point closer to c' than c
○ Contradicts definition of owner

● Must also be unique
○ Can’t have two points with minimum distance
○ Neither owner

Condition #2
● Condition #1 narrows down the owner candidates to either 1 or 0
● If there isn’t an owner, we’re going to recur on the children

○ Left and right hyper-rectangles

● Let’s say we have a candidate c1
● Is c1 a true owner?

○ Check against all other centers, call one of them c2
○ Is every point in h closer to c1 than c2? c1 “dominates” c2

Domination
● Line of points equidistant to c1 and c2 L
● If there’s a point p on the wrong side of L,

c1 doesn’t dominate c2
● Optimization problem:

○ Objective: Be as far in the half-space as possible
(not the same as being close to c2!)

○ Constraint: Contained in h

● How to measure objective?
● Look at v = c2 - c1
● v dot p
● Linear programming!

v

Linear Programming
● Linear objective and linear constraints
● Yes! Objective v dot p, v is a constant

○ = v1 p1 + v2 p2 + … + vD pD , linear function of p

● Constraints of the form
○ h[d][0] ≤ p[d] ≤ h[d][1] for d between 0 … D - 1

● Algorithms for linear programming irrelevant
○ Mathematical ideas relevant

Solving Linear Programs
● Feasible value: satisfies constraints
● Region of feasible values: simplex
● Optimal value must be at a corner of the simplex
● Proof. Start at arbitrary point and follow the gradient (vector)

until we reach the exterior. From here, move along edges.
All edges are orthogonal to the gradient or not.
(1) If all are, then our function value can’t change, current
value is optimal. Move along an edge to a corner.
(2) If all aren’t, move along an edge in the right direction.
Must eventually run out of edges, at which point (1) applies.

(moving in direction of
gradient increases
function value)

(I don’t know enough
math to justify this)

Back to Domination
● Gradient is simply v = c2 - c1, direction towards c2’s side of the line
● Simplex is the hyper-rectangle h
● Optimal value occurs at corners of simplex = corners of h
● Can efficiently compute best point p

○ Take max or min depending on which is in the direction of c2 - c1

Example

Putting it Together

 “For each data point in h” when h is a leaf and
leaves of a kd-tree contain exactly one point?
 ¯_(ツ)_/¯

base case

recursion

condition #1

condition #2

This is where the algorithm saves time!

Putting it Together, Code

Finishing Touches

One Small Adjustment...
● Paper’s kd-tree stores points at leaves
● In our kd-tree, intermediate nodes also have points
● Simply add its point with brute force before recursion

Blacklisting
● Suppose c1 is an owner candidate
● c1 dominates c2 but isn’t an owner overall
● Normally, recur and have to check again
● But c2 can’t be an owner anymore!

○ If we recur on h', every point in h' is in h
○ Thus, c1 still dominates c2
○ c2 can’t be an owner

● Saves time in multiple ways!
○ Checking ownership
○ If at a leaf, less centers to check

Blacklisting, code

Approximate Pruning
● Speed up the algorithm by cutting off recursion
● Heuristic for when this is “safe”

● Few points, small rectangle, early on = less error
● Divide points between current centers

h: hyper-rectangle
n: number of points
U: hyper-rectangle
 of all points
M: number of dimensions
i: iteration number
d: parameter,
recommended 0.8

Pruning, Code

Paper is done!
How’s the results?

Benchmarks, Dataset
hanekawa.png: https://stephen-huan.github.io/assets/images/hanekawa.png

 Size: 570 x 517

 Pixels: 294690

Distinct pixel count: 59809

 Most common pixel: (250, 228, 213) => 19377

https://stephen-huan.github.io/assets/images/hanekawa.png

Benchmarks, Result
testcases/hanekawa.png, K = 8

k-means++ initialization scheme

PyPy Python

kd-tree 5.220s 6.420s

naive 8.379s 17.164s

Benchmarks, Results
testcases/hanekawa.png, K = 256, PyPy

 naive (run on all pixels): 35m 22s073

 naive (distinct pixels): 8m 38s343

kd-tree median (n log n): 3m 52s540

kd-tree pre-sort (dn log n): 3m 48s248

kd-tree geometric reasoning: 1m 47s550

kd-tree approximate (d=0.8): 2m 18s735

Slower!
Implementation mistake? ¯_(ツ)_/¯
Worse centers -> more iterations
Overhead in calculating prune

Extensions

Continue Parameter
● Trying to show c is an owner
● If it isn’t, should we break?

○ Don’t waste time comparing against other centers
○ But continuing could save time if we removed them with blacklisting

● Usually faster to continue than not continue
○ 4m 0s716 without continue vs 26s802 with continue

kd-tree for Leaf Nodes
● O(0) if point is pruned
● O(K) if it isn’t (leaf or intermediate)
● Can we speed the worst case up?
● Build a kd-tree on the centers again!
● ~ O(log K)
● K needs to be large in practice; blacklisting removes many centers

○ Average 1-2 centers for K = 256
○ Not O(K), actually O(# of centers)

● Use kd-tree if len(centers) > F(log2 K + 2d), brute force otherwise
○ F = 4, see appendix for empirical justification

kd-tree for Leaf Nodes, Code

“Pseudo”-owner
● Original paper restrictions seem excessive

○ Does c really need to be the unique minimum?
○ Does c really need to completely dominate?

● No, can relax the conditions
○ Allowed to arbitrarily choose between equidistant centers
○ Maintains same quality and sometimes the same centers

● Reduces number of candidates and improves pruning

Benchmarks, Results
testcases/hanekawa.png, K = 256, PyPy

 naive (run on all pixels): 35m 22s073

 naive (distinct pixels): 8m 38s343

kd-tree median (n log n): 3m 52s540

kd-tree pre-sort (dn log n): 3m 48s248

kd-tree approximate (d=0.8): 2m 18s735

kd-tree geometric reasoning: 1m 47s550

 w/out k-means++: 32s732

 w/ pseudo owners: 26s802

4x improvement (5x less pixels)

5x improvement

3x improvement (removing k-means++)

= 60x improvement!

k-means++

k-means++, Review
● Initialization strategy
● For more information, see the previous lecture

https://activities.tjhsst.edu/computervision/lectures/kmeans_Handout.pdf#page=11

Speedup
● We can apply the kd-tree algorithm
● Simply change the counters
● Leaf/internal node:

○ D
○

● Pruned point:

Speedup, Analysis
● Might not seem like we’re doing much
● Need to touch every point still
● However, save O(K) distance checking if pruned

○ Save O(average # of centers) after blacklisting for leaves

● Could be up to K times faster
● Can we do better?

Caching IDs
● Need to iterate over each point when pruned

○ Original algorithm can simply skip over

● Centers aren’t changing, only added
● Cache IDs if the new center doesn’t change ownership

○ If kd-node points to c and c owns h, then c must have owned h in the past
○ If c owned h and c dominates the new center, all points already point to c
○ No need to do anything

Caching IDs, Analysis
● Expected time savings?
● Assume points are split evenly among centers

○ K = 1 -> need to update all points
○ K = 2 -> need to update half of the points
○ etc.

● N + ½ N + ⅓ N + … + 1/K N = N (1 + ½ + ⅓ + … + 1/K)
● = N HK = O(N log K)
● Very optimistic
● In practice:

○ 108,248 for K = 8 vs NK = 480,000
○ 4,794,349 for K = 256 vs NK = 15,360,000

Probability Distribution
● Still maintaining a list of distances
● Need to sample from this PMF
● = O(N), O(NK) over K centers
● Can we speed this up?

BIT CMF
● Maintain the cumulative mass function (CMF) instead
● CMF is just the prefix sum of the PMF
● Only update when a point changes
● Can efficiently update with segment trees or binary indexed trees (BITs)

○ My BIT and segtree implementation here

● Sample by binary searching on the CMF
○ Why does this work? See: my analysis of Mudae (page 9) and the previous lecture

https://activities.tjhsst.edu/sct/lectures/anrd/250_Segment_Trees_and_Lazy_Propagation.pdf
https://activities.tjhsst.edu/sct/lectures/anrd/240_Binary_Indexed_Trees_(Fenwick_Trees).pdf
https://gist.github.com/stephen-huan/aa609965c86d750736398c28b025f9be#binary-indexed-trees-bits
https://github.com/stephen-huan/cs-lectures/blob/master/probability-theory/gacha-optimization/writeup.pdf
https://activities.tjhsst.edu/computervision/lectures/kmeans_Handout.pdf#page=14

BIT CMF, Code

BIT CMF, Analysis
● Sample runs in O(log2 N)

○ log N queries from the binary search, each query is log N
○ = O(K log2 N) over K centers

● The total amount of work for updating IDs is harder
● Optimistically, O(N log K) total updates

○ = O(N log N log K) overall

● In practice, closer to O(NK) -> O(N log N K)
● Naive is O(NK2)

○ K iterations of finding the closest center for N points

Benchmarks
testcases/hanekawa.png, K = 256, PyPy

k-means++ naive: 311.600s, 111 iterations

k-means++ kd-tree: 122.594s, ---

k-means++ geometric reasoning: 75.269s, ---

k-means++ cache ids: 53.181s, ---

k-means++ BIT CMF: 44.143s, ---

 random.sample(): 0.001s, 108

k-means++, Judgement

● k-means++ has strong theoretical properties
● On “real-world” datasets, irrelevant

○ K iterations over N is just way too much!
○ Can’t parallelize, each iteration depends on previous

● Need some way of speeding up...

Conclusion
● Build a kd-tree on the points, not the centers
● Works well in practice and in theory
● Many avenues for improvement

256 color image generated in less than 30 seconds

References
● Accelerating Exact k-means Algorithms with Geometric Reasoning
● k-means, kd-Trees, and Median of Medians (CV club lecture)
● CMU kd-tree, kd-tree continued

https://dl.acm.org/doi/10.1145/312129.312248
https://activities.tjhsst.edu/computervision/lectures/kmeans_Handout.pdf
https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/kdtrees.pdf
https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/kdrangenn.pdf

Appendix

Convergence
● How do we test if k-means has converged?
● Centers hasn’t changed
● Sort new center list, check if equal to previous
● Not necessarily O(D K log K) (although this is a fairly trivial cost)
● Some sorting algorithms proportional to displacement, e.g. bubble sort
● Can run in nearly linear time if the centers don’t change that much

Determining F
● Naive:

○ T1(x) = mx + b
○ 0 at x = 0, 6 at x = 100
○ m = 6/100, b = 0

● kd-tree:
○ T2(x) = a ln x + b
○ 2 at 20, 3 at 100
○ a = 1/(ln(100) - ln(20)), b = 2 - a ln 20

● K = 256, T2(K) = 3.58, T1
-1(K) = 59.7

○ log2 K + 2d = 8 + 8 = 16
○ Therefore F(log2 K + 2d) = 16F ≈ 64
○ F = 4

