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1 Introduction

Suppose we have a scalar field (a function of possibly multiple variables that returns a
single scalar value). We know from multivariable calculus that we can take derivatives
of a function of multiple variables with respect to each variable, and encapsulate all the
derivatives into a gradient vector.

Now we will see what will happen if we take the derivative of a scalar field with respect
to a vector. We will approach this from two angles, a standard multivariate approach
and a more tensor-theoretic approach.

2 Examples

Suppose we have the scalar field
f(~β) = ~zT ~β

This is a function of multiple variables which returns a single number (~zT ~β = ~z · ~β). If
we explicitly write it out, we get ~zT ~β = z1β1 + z2β2 + . . . Taking the partial derivative
with respect to β1, we get z1, with respect to β2, we get z2, and so on. Since the gradient
of f , denoted ∇~β

f is
〈
∂f
∂β1

, ∂f∂β2 , . . .
〉
, the gradient is just ~z.

We can come to the same conclusion with a different method. Recall that the defini-
tion for the derivative in singlevariate calculus is:

df

dx
= lim

h→0

f(x+ h)− f(x)
h

Intuitively, the change in the function over the infinitesimal change in x. If we try to
extend this definition to vectors, and replace zero with the zero vector, we run into a
problem—division by a vector isn’t well-defined. So we need a different conceptual basis
to define the derivative.
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The derivative is a linear transformation , that is, it fulfills two properties:

1. T (x+ y) = T (x) + T (y) for any x, y

2. T (cx) = cT (x) for any scalar.

The derivative of f+g, for two functions f and g is the derivative of f plus the derivative
of g, scalars can be taken out of differentiation and added back in later. We can also
think of the derivative giving us a way to estimate the change in a function as a function
of changing x, e.g. df = f ′(x)dx. df can then be thought of as a linear transformation
of dx. So we have two forms of linearity: the derivative is a linear transformation in
its operator sense, that is, a linear transformation from functions to their derivatives,
as well as a linear transformation from a infinitesimal change in x to its corresponding
infinitesimal change in f(x). If we think of the derivative as a linear transformation of
differentials, that gives the alternative definition we are looking for.

df = f(~β + d~β)− f(~β) Definition

= ~zT ~β + ~zTd~β − ~zT ~β Expanding

= ~zTd~β

which is a linear transformation of d~β, and matches the result derived earlier. Except for
the transpose, which I don’t have a good way of explaining. I guess we need to transpose
our answer at the end. For a more complicated example, suppose we have the field

f(~β) = ~βTσ~β

where σ is a symmetric matrix. For convenience, let σi be the ith row of σ.

~βTσ~β = ~β ·
〈
σ1 · ~β,σ2 · ~β, . . .

〉
Definition of matrix-vector product

= ~β1 · σ1 · ~β + ~β2 · σ2 · ~β + . . . Expanding the dot product

= ~β1(σ11
~β1 + σ12

~β2 + σ13
~β3 + . . .+ σ21

~β2 + σ31
~β3 + . . .) Collecting ~β1 terms

We now compute the partial with respect to ~β1
∂f

∂~β1
= 2σ11

~β1 + [2σ12
~β2 + σ13

~β3 + . . .+ σ21
~β2 + σ13

~β3 + . . .]

= 2σ11
~β1 + [2σ1 · ~β − 2σ11

~β1] By symmetry of σ

= 2σ1 · ~β
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Since ~β1 is symmetric to every index in ~β, ∇~β
f = 2σ~β. We can also do this with our

alternative definition.

df = f(~β + d~β)− f(~β) Definition

= (~β + d~β)Tσ(~β + d~β)− ~βTσ~β Expanding

= (~β + d~β)(σ~β + σd~β)− ~βTσ~β

= ~βTσ~β + ~βTσd~β + d~βTσ~β + d~βTσd~β − ~βTσ~β

First, we can discard d~βTσd~β since it is not a linear transformation of d~β (intuitvely, it
is a higher order differential term)

= ~βTσ~β + ~βTσd~β + d~βTσ~β − ~βTσ~β

Taking advantage of the fact that (~βTσd~β)T = d~βTσT ~β = d~βTσ~β, and the fact that
both are scalars, so if their transpose is equal they are equal,

= 2~βTσd~β

If we transpose 2~βTσ, we get 2σ~β, which is our answer.

3 Least-squares

The least squares problem is the following: we have a matrix of features X, and a list of
prediction values ~y. We suspect there is a linear relationship between the features and
the target value, so we are trying to find a set of weights ~β such that the predictions
generated by ŷ = X~β are as close to ~y as possible, i.e. ‖~y − ŷ‖ is minimized. First, we
can minimize ‖~y − ŷ‖2 instead since squaring is monotonic, and that avoids having to
take a pesky square root. To minimize a function, we take the gradient and set equal to
the zero vector.

f(~β) = ‖~y − ŷ‖2

= (~y − ŷ) · (~y − ŷ) Definition of magnitude
= ~y · ~y − 2~y · ŷ + ŷ · ŷ

= ~yT~y − 2~yTX~β + (X~β)TX~β Definition of ŷ

= ~yT~y − 2~yTX︸ ︷︷ ︸
~z

~β + ~βT XTX︸ ︷︷ ︸
σ

~β XTX is symmetric

Using the gradients dervied above, and the fact that ~y · ~y is a constant,
∇~β

f = −2XT~y + 2XTX~β = ~0

XTX~β =XT~y

~β = (XTX)−1XT~y
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