Linear Algebra

Stephen Huan

October 6, 2020

1 Introduction

Suppose we have a scalar field (a function of possibly multiple variables that returns a single scalar value). We know from multivariable calculus that we can take derivatives of a function of multiple variables with respect to each variable, and encapsulate all the derivatives into a gradient vector.

Now we will see what will happen if we take the derivative of a scalar field with respect to a vector. We will approach this from two angles, a standard multivariate approach and a more tensor-theoretic approach.

2 Examples

Suppose we have the scalar field

$$
f(\vec{\beta})=\vec{z}^{T} \vec{\beta}
$$

This is a function of multiple variables which returns a single number $\left(\vec{z}^{T} \vec{\beta}=\vec{z} \cdot \vec{\beta}\right)$. If we explicitly write it out, we get $\vec{z}^{T} \vec{\beta}=z_{1} \beta_{1}+z_{2} \beta_{2}+\ldots$ Taking the partial derivative with respect to β_{1}, we get z_{1}, with respect to β_{2}, we get z_{2}, and so on. Since the gradient of f, denoted $\nabla_{\vec{\beta}} f$ is $\left\langle\frac{\partial f}{\partial \beta_{1}}, \frac{\partial f}{\partial \beta_{2}}, \ldots\right\rangle$, the gradient is just \vec{z}.

We can come to the same conclusion with a different method. Recall that the definition for the derivative in singlevariate calculus is:

$$
\frac{d f}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Intuitively, the change in the function over the infinitesimal change in x. If we try to extend this definition to vectors, and replace zero with the zero vector, we run into a problem - division by a vector isn't well-defined. So we need a different conceptual basis to define the derivative.

The derivative is a linear transformation, that is, it fulfills two properties:

1. $T(x+y)=T(x)+T(y)$ for any x, y
2. $T(c x)=c T(x)$ for any scalar.

The derivative of $f+g$, for two functions f and g is the derivative of f plus the derivative of g, scalars can be taken out of differentiation and added back in later. We can also think of the derivative giving us a way to estimate the change in a function as a function of changing x, e.g. $d f=f^{\prime}(x) d x$. $d f$ can then be thought of as a linear transformation of $d x$. So we have two forms of linearity: the derivative is a linear transformation in its operator sense, that is, a linear transformation from functions to their derivatives, as well as a linear transformation from a infinitesimal change in x to its corresponding infinitesimal change in $f(x)$. If we think of the derivative as a linear transformation of differentials, that gives the alternative definition we are looking for.

$$
\begin{aligned}
d f & =f(\vec{\beta}+d \vec{\beta})-f(\vec{\beta}) & & \text { Definition } \\
& =\vec{z}^{T} \vec{\beta}+\vec{z}^{T} d \vec{\beta}-\vec{z}^{T} \vec{\beta} & & \text { Expanding } \\
& =\vec{z}^{T} d \vec{\beta} & &
\end{aligned}
$$

which is a linear transformation of $d \vec{\beta}$, and matches the result derived earlier. Except for the transpose, which I don't have a good way of explaining. I guess we need to transpose our answer at the end. For a more complicated example, suppose we have the field

$$
f(\vec{\beta})=\vec{\beta}^{T} \boldsymbol{\sigma} \vec{\beta}
$$

where $\boldsymbol{\sigma}$ is a symmetric matrix. For convenience, let $\boldsymbol{\sigma}_{i}$ be the i th row of $\boldsymbol{\sigma}$.

$$
\begin{aligned}
\vec{\beta}^{T} \boldsymbol{\sigma} \vec{\beta} & =\vec{\beta} \cdot\left\langle\boldsymbol{\sigma}_{1} \cdot \vec{\beta}, \boldsymbol{\sigma}_{2} \cdot \vec{\beta}, \ldots\right\rangle & & \text { Definition of matrix-vector } 1 \\
& =\vec{\beta}_{1} \cdot \boldsymbol{\sigma}_{1} \cdot \vec{\beta}+\vec{\beta}_{2} \cdot \boldsymbol{\sigma}_{2} \cdot \vec{\beta}+\ldots & & \text { Expanding the dot product } \\
& =\vec{\beta}_{1}\left(\boldsymbol{\sigma}_{11} \vec{\beta}_{1}+\boldsymbol{\sigma}_{12} \vec{\beta}_{2}+\boldsymbol{\sigma}_{13} \vec{\beta}_{3}+\ldots+\boldsymbol{\sigma}_{21} \vec{\beta}_{2}+\boldsymbol{\sigma}_{31} \vec{\beta}_{3}+\ldots\right) & & \text { Collecting } \vec{\beta}_{1} \text { terms }
\end{aligned}
$$

We now compute the partial with respect to $\vec{\beta}_{1}$

$$
\begin{array}{rlr}
\frac{\partial f}{\partial \vec{\beta}_{1}} & =2 \sigma_{11} \vec{\beta}_{1}+\left[2 \sigma_{12} \vec{\beta}_{2}+\sigma_{13} \vec{\beta}_{3}+\ldots+\sigma_{21} \vec{\beta}_{2}+\sigma_{13} \vec{\beta}_{3}+\ldots\right] & \\
& =2 \sigma_{11} \vec{\beta}_{1}+\left[2 \sigma_{1} \cdot \vec{\beta}-2 \sigma_{11} \vec{\beta}_{1}\right] & \text { By symmetry of } \boldsymbol{\sigma} \\
& =2 \sigma_{1} \cdot \vec{\beta} &
\end{array}
$$

Since $\vec{\beta}_{1}$ is symmetric to every index in $\vec{\beta}, \nabla_{\vec{\beta}} f=2 \boldsymbol{\sigma} \vec{\beta}$. We can also do this with our alternative definition.

$$
\begin{array}{rlrl}
d f & =f(\vec{\beta}+d \vec{\beta})-f(\vec{\beta}) & & \text { Definition } \\
& =(\vec{\beta}+d \vec{\beta})^{T} \boldsymbol{\sigma}(\vec{\beta}+d \vec{\beta})-\vec{\beta}^{T} \boldsymbol{\sigma} \vec{\beta} & & \text { Expanding } \\
& =(\vec{\beta}+d \vec{\beta})(\boldsymbol{\sigma} \vec{\beta}+\boldsymbol{\sigma} d \vec{\beta})-\vec{\beta}^{T} \boldsymbol{\sigma} \vec{\beta} & & \\
& =\vec{\beta}^{T} \boldsymbol{\sigma} \vec{\beta}+\vec{\beta}^{T} \boldsymbol{\sigma} d \vec{\beta}+d \vec{\beta}^{T} \boldsymbol{\sigma} \vec{\beta}+d \vec{\beta}^{T} \boldsymbol{\sigma} d \vec{\beta}-\vec{\beta}^{T} \boldsymbol{\sigma} \vec{\beta} &
\end{array}
$$

First, we can discard $d \vec{\beta}^{T} \boldsymbol{\sigma} d \vec{\beta}$ since it is not a linear transformation of $d \vec{\beta}$ (intuitvely, it is a higher order differential term)

$$
=\vec{\beta}^{T} \boldsymbol{\sigma} \vec{\beta}+\vec{\beta}^{T} \boldsymbol{\sigma} d \vec{\beta}+d \vec{\beta}^{T} \boldsymbol{\sigma} \vec{\beta}-\vec{\beta}^{T} \boldsymbol{\sigma} \vec{\beta}
$$

Taking advantage of the fact that $\left(\vec{\beta}^{T} \boldsymbol{\sigma} d \vec{\beta}\right)^{T}=d \vec{\beta}^{T} \boldsymbol{\sigma}^{T} \vec{\beta}=d \overrightarrow{\beta^{T}} \boldsymbol{\sigma} \vec{\beta}$, and the fact that both are scalars, so if their transpose is equal they are equal,

$$
=2 \vec{\beta}^{T} \boldsymbol{\sigma} d \vec{\beta}
$$

If we transpose $2 \vec{\beta}^{T} \boldsymbol{\sigma}$, we get $2 \boldsymbol{\sigma} \vec{\beta}$, which is our answer.

3 Least-squares

The least squares problem is the following: we have a matrix of features \boldsymbol{X}, and a list of prediction values \vec{y}. We suspect there is a linear relationship between the features and the target value, so we are trying to find a set of weights $\vec{\beta}$ such that the predictions generated by $\hat{y}=\boldsymbol{X} \vec{\beta}$ are as close to \vec{y} as possible, i.e. $\|\vec{y}-\hat{y}\|$ is minimized. First, we can minimize $\|\vec{y}-\hat{y}\|^{2}$ instead since squaring is monotonic, and that avoids having to take a pesky square root. To minimize a function, we take the gradient and set equal to the zero vector.

$$
\begin{aligned}
f(\vec{\beta}) & =\|\vec{y}-\hat{y}\|^{2} & & \\
& =(\vec{y}-\hat{y}) \cdot(\vec{y}-\hat{y}) & & \text { Definition of magnitude } \\
& =\vec{y} \cdot \vec{y}-2 \vec{y} \cdot \hat{y}+\hat{y} \cdot \hat{y} & & \\
& =\vec{y}^{T} \vec{y}-2 \vec{y}^{T} \boldsymbol{X} \vec{\beta}+(\boldsymbol{X} \vec{\beta})^{T} \boldsymbol{X} \vec{\beta} & & \text { Definition of } \hat{y} \\
& =\vec{y}^{T} \vec{y}-\underbrace{2 \vec{y}^{T} \boldsymbol{X}}_{\vec{z}} \vec{\beta}+\vec{\beta}^{T} \underbrace{\boldsymbol{X}^{T} \boldsymbol{X}}_{\boldsymbol{\sigma}} \vec{\beta} & & \boldsymbol{X}^{T} \boldsymbol{X} \text { is symmetric }
\end{aligned}
$$

Using the gradients dervied above, and the fact that $\vec{y} \cdot \vec{y}$ is a constant,

$$
\begin{aligned}
\nabla_{\vec{\beta}} f & =-2 \boldsymbol{X}^{T} \vec{y}+2 \boldsymbol{X}^{T} \boldsymbol{X} \vec{\beta}=\overrightarrow{0} \\
\boldsymbol{X}^{T} \boldsymbol{X} \vec{\beta} & =\boldsymbol{X}^{T} \vec{y} \\
\vec{\beta} & =\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \vec{y}
\end{aligned}
$$

