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1 Introduction

Suppose we have a scalar field (a function of possibly multiple variables that returns a
single scalar value). We know from multivariable calculus that we can take derivatives
of a function of multiple variables with respect to each variable, and encapsulate all the
derivatives into a gradient vector.

Now we will see what will happen if we take the derivative of a scalar field with respect
to a vector. We will approach this from two angles, a standard multivariate approach
and a more tensor-theoretic approach.

2 Examples

Suppose we have the scalar field
fB) =218
This is a function of multiple variables which returns a single number (z7 5 =7 E) If

we explicitly write it out, we get z7 5 = 2101 + 22032 + ... Taking the partial derivative
with respect to 81, we get z1, with respect to s, we get 29, and so on. Since the gradient

of f, denoted ng is <88—Bfl, 8%);’ .. .>, the gradient is just 2.

We can come to the same conclusion with a different method. Recall that the defini-
tion for the derivative in singlevariate calculus is:
df flx+h) - f(z)

gz hm h

Intuitively, the change in the function over the infinitesimal change in x. If we try to
extend this definition to vectors, and replace zero with the zero vector, we run into a
problem—division by a vector isn’t well-defined. So we need a different conceptual basis
to define the derivative.



The derivative is a linear transformation, that is, it fulfills two properties:
1. T(x+y) =T(x)+T(y) for any =,y
2. T(cx) = ¢T'(x) for any scalar.

The derivative of f+ g, for two functions f and g is the derivative of f plus the derivative
of g, scalars can be taken out of differentiation and added back in later. We can also
think of the derivative giving us a way to estimate the change in a function as a function
of changing z, e.g. df = f'(x)dx. df can then be thought of as a linear transformation
of dx. So we have two forms of linearity: the derivative is a linear transformation in
its operator sense, that is, a linear transformation from functions to their derivatives,
as well as a linear transformation from a infinitesimal change in z to its corresponding
infinitesimal change in f(z). If we think of the derivative as a linear transformation of
differentials, that gives the alternative definition we are looking for.

df = f(§+ dﬁ) — f(ﬁ) Definition
=15+ 2146 - 16 Expanding
=df

which is a linear transformation of dﬁ , and matches the result derived earlier. Except for
the transpose, which I don’t have a good way of explaining. I guess we need to transpose
our answer at the end. For a more complicated example, suppose we have the field

f(B)=5"ap

where o is a symmetric matrix. For convenience, let o; be the ith row of o.

-

BTO'ﬁ = 3 <U1 : 5, oo - 5, . > Definition of matrix-vector product
= 51 "0 §+ 52 -0 - B—F . Expanding the dot product
= 51 (0'1151 + 0'1252 + 0'1353 +...+ 02152 + 03153 +...) Collecting 51 terms

We now compute the partial with respect to 51

0 . . . . .
85 =201101+ 201202 + 01303+ ... + 02102 + 01363 + .. ]
1

= 201151 + [20 - 5— 201151] By symmetry of o
=20,-8



Since 51 is symmetric to every index in ,6_" , VvV i f= 20'5 . We can also do this with our
alternative definition.

df = f(5+dB) — f(B) Definition
= (B+dB) o5 +dB) — frof Expanding
= (B +dB)(of +odf) — fTop
=fTof+ flodf + dfTof + dfTodf — fTof
First, we can discard dB_T adg since it is not a linear transformation of dg (intuitvely, it
is a higher order differential term)

= plof+ 3 odf +df"of - T op
Taking advantage of the fact that (B_Tadg)T = dETaTg = dBTUg, and the fact that
both are scalars, so if their transpose is equal they are equal,

= QBTadg

If we transpose QB_T o, we get 203, which is our answer.

3 Least-squares

The least squares problem is the following: we have a matrix of features X, and a list of
prediction values . We suspect there is a linear relationship between the features and
the target value, so we are trying to find a set of weights E such that the predictions
generated by § = X3 are as close to i as possible, i.e. || — §|| is minimized. First, we
can minimize || — §||* instead since squaring is monotonic, and that avoids having to
take a pesky square root. To minimize a function, we take the gradient and set equal to
the zero vector.

3 S a2
fFB) =g —1ll
=Wy—9) - (T—19) Definition of magnitude
=y y=20-9+9-9
=yly— 2§TX5+ (XB)TXB Definition of §
=7y -20" X B+ 5T XX X7 X is symmetric
bod o

Using the gradients dervied above, and the fact that - ¢ is a constant,
Vif = —2X"i+ 2XTX3=0
XTxg=x"y

i=(x"x)"'x"y
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