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Probability Theory

Before we start, we’ll need to know some basic probability...
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Basic Definitions

Definition

The sample space is the set of all possible outcomes, commonly
denoted Ω. An event is just “something which occurs”, or
formally speaking, a set which is a subset of Ω.

Definition

The class of events F is a σ-algebra on Ω (that is, it is a
collection of the subsets of Ω, including Ω, and closed under
union and complement). We will assume F = P(Ω), the power
set of Ω (the set of all subsets of Ω).
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Probability Function

Definition

(Kolmogorov axioms) Given a sample space Ω and event class
F , a probability function P has the following properties:

1 P(E ) ∈ R,P(E ) ≥ 0 for all E ∈ F
2 P(Ω) = 1
3 If E1 and E2 are disjoint sets in F ,

P(E1 ∪ E2) = P(E1) + P(E2)

It follows that (Ω,F ,P) is a probability space.
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Law of Total Probability

Theorem

If Bi is a partition of Ω, then P(A) =
∑

i P(A ∩ Bi )

Proof.

Let’s look at the sum of the first two terms.
P(A ∩ B1) + P(A ∩ B2) = P((A ∩ B1) ∪ (A ∩ B2)) because
A ∩ B1 and A ∩ B2 are disjoint (B1 and B2 are disjoint).
= P(A ∩ (B1 ∪ B2)). Extending the logic to all Bi ,

= P(A ∩ (B1 ∪ B2 ∪ · · · ∪ Bn))

We know B1 ∪ B2 ∪ · · · ∪ Bn = Ω since it’s a partition, and
A ∩ Ω = A by definition. So this is just P(A).
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Random Variable

Definition

A random variable (r.v.) is a function Ω→ R, i.e. a function
assigning a number to each outcome, but can more intuitively
be thought of as a “dispenser” of values. We will denote
random variables as a single uppercase letter, e.g. X or Z .

Randomness

Although the probability space carries “randomness”, a random
variable is neither random nor a variable — it is a deterministic
function assigning a fixed number to a particular outcome.
Although what outcome you get is random (from the
randomness of the space), the assignment is the same.
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Expected Value

Definition

The expected value is what we “expect” a random variable to
dispense over many samples, or the average value:

E[X ] =
∑
x∈X

x P(x)

We will also denoted the expected value as µ.

Example

Let X take on value 1 with probability 1
2 , 2 with 1

4 chance, and
3 with 1

4 chance. E[X ] = 2 · 12 + 2 · 14 + 3 · 14 = 9
4 .
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Law of the Unconscious Statistician

Theorem

E[f (X )] =
∑

x∈X f (x)P(x), i.e. the expected value of a
transformation of a random variable.

Proof.

(informal) We can think of f (x) as partitioning X into subsets
like S = {x ∈ X | f (x) = y} for some y . When we compute
P(y), it’ll be the sum of P(x) for all x ∈ S . But we know each
S(y) is disjoint for different values of y since they necessarily
form a partition. So if we iterate over x , we cover the same set
anyways, multiplying each P(x) by the f (x) it belongs to.
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Linearity of Expectation

Corollary

The linearity of expectation, i.e.
1 E[X + Y ] = E[X ] + E[Y ] for random variables X ,Y

2 E[cX ] = c E[X ] for c ∈ R
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Proof of Linearity of Expectation

Proof.

Begin with the definition of expectation:

E[X + Y ] =
∑
x∈X

∑
y∈Y

(x + y)P(x , y)

=
∑
x∈X

∑
y∈Y

x P(x , y) +
∑
x∈X

∑
y∈Y

y P(x , y)

Swapping order and applying the law of total probabilities,

=
∑
x∈X

x
∑
y∈Y

P(x , y)

︸ ︷︷ ︸
P(x)

+
∑
y∈Y

y
∑
x∈X

P(x , y)︸ ︷︷ ︸
P(y)

=
∑
x∈X

x P(x) +
∑
y∈Y

y P(y) = E[X ] + E[Y ]
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Proof of the Linearity of Expectation, Continued

Proof.

We use the transformation f (x) = cx with the law of the
unconscious statistician:

E[cX ] =
∑
x∈X

(cx)P(x)

= c
∑
x∈X

x P(x)

= c E[x ]
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Variance

Definition

The variance is the expected squared deviation from the
expected value. The larger the variance, the more “variable” the
random variable is. By definition,

Var[X ] = E[(X − E[X ])2]

We also denote the variance as σ2, since it is the square of the
standard deviation σ.
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Useful Alternative Form

Theorem

Var[X ] = E[X 2]− E[X ]2, a convenient form of variance.

Proof.

By definition,

Var[X ] = E[(X − E[X ])2]

= E[X 2 − 2X E[X ] + E[X ]2]

From the linearity of expected value,
= E[X 2]− E[2E[X ]X ] + E[E[X ]2]

= E[X 2]− (2E[X ]) E[X ] + E[X ]2

= E[X 2]− E[X ]2
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k-means Refresher

Given a set of points X , partition into Si . Cost function:∑
i

∑
x∈Si

‖x − µi‖2

Recall the definition of
Var[Si ] = E[(Si − µi )

2] =
∑
x∈Si

P(x)‖x − µi‖2

Looks awfully similar, but we’re missing a P(x) = 1
|Si | :∑

i

|Si |Var[Si ]

Dividing by the total number of points |X|,∑
i

|Si |
|X |

Var[Si ] =
∑
i

P(Si ) Var[Si ]

= E[Var[X | S ]]
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Conditional Probability

Definition

The probability that an event A happens conditional on B is
denoted P(A | B), i.e. the probability A happens “given” B
happens. This should not be confused for P(A ∩ B), the
probability A happens and B happens.
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Conditional Probability

Corollary

P(A | B) =
P(A ∩ B)

P(B)

Proof.

(informal) We will use an informal definition of probability as the
number of ways for something to occur over the total number
of ways. Since we know B occurs, the total number of ways is
P(B). The number of ways A occurs is the number of events
where A occurs and B occurs, because we know B occurs.
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Conditional Expectation

Definition

E[X | Y ] is the conditional expectation of the random variable
X conditional on the random variable Y . Note that E[X | Y ] is
a random variable which depends on the particular value of Y !
Following a similar definition to expectation,

E[X | Y ] =
∑
x∈X

x P(X = x | Y = y)

Example of conditional expectation

For example, E[X | Y = 1] is a real number equal to the
expected value of X when Y is 1. But Y can take on many
different values, so E[X | Y ] in general is a random variable; by
definition it assigns a real number to each outcome of Y .
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Law of Total Expectation

Because E[X | Y ] is a random variable, we can treat it like any
other random variable and take its expectation and variance.

Theorem

E[X ] = E[E[X | Y ]] for any random variables X ,Y
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Proof of the Law of Total Expectation

Proof.

Starting with the definition of expectation,

E[E[X | Y ]] =
∑
y∈Y

P(y) E[X | Y ]

Expanding with the defintition of conditional expectation,

=
∑
y∈Y

P(y)
∑
x∈X

x P(x | y)

=
∑
y∈Y

∑
x∈X

x P(x , y)

=
∑
x∈X

x
∑
y∈Y

P(x , y)

=
∑
x∈X

x P(x) = E[X ]
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Conditional Variance

Definition

Var[X | Y ] is the conditional variance of the random variable X
conditional on the random variable Y . Like the conditional
expectation, this is a random variable:

Var[X | Y ] = E[(X − E[X | Y ])2 | Y ]

Note: normally, Var[X ] = E[(X − E[X ])2]. But we can’t literally
plug in X | Y into that formula because X | Y has no definition
by itself: it must be wrapped in E or Var or some other
operator to become a valid random variable.
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Conditional Variance Alternative Form

Theorem

Var[X | Y ] = E[X 2 | Y ]− E[X | Y ]2

Proof.

Begin with the definition of conditional variance,

Var[X | Y ] = E[(X − E[X | Y ])2 | Y ]

= E[X 2 − 2X E[X | Y ] + E[X | Y ]2 | Y ]

= E[X 2 | Y ]− 2E[X | Y ] E[X | Y ] + E[X | Y ]2

= E[X 2 | Y ]− E[X | Y ]2
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Let’s Play Around With This

What if we take the expectation of the conditional variance?

E[Var[X | Y ]] = E[E[X 2 | Y ]− E[X | Y ]2]

= E[E[X 2 | Y ]]− E[E[X | Y ]2]

Using the law of total expectation,
= E[X 2]− E[E[X | Y ]2]

Re-arranging,
E[X 2] = E[Var[X | Y ]] + E[E[X | Y ]2]

= E[Var[X | Y ] + E[X | Y ]2]
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Let’s See Where This Goes

Obviously,

E[X ]2 = E[E[X | Y ]]2

So we have an alternative form for E[X 2] and E[X ]2 in terms of
conditionals. What if we put them together?

Var[X ] = E[X 2]− E[X ]2

= E[Var[X | Y ] + E[X | Y ]2]− E[E[X | Y ]]2

= E[Var[X | Y ]] + (E[E[X | Y ]2]− E[E[X | Y ]]2)

But E[X | Y ] is a normal random variable, so

Var[X ] = E[Var[X | Y ]] + Var[E[X | Y ]]

This is the law of total variance!
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Law of Total Variance

Theorem

Var[X ] = E[Var[X | Y ]]︸ ︷︷ ︸
intra-class variance

+ Var[E[X | Y ]]︸ ︷︷ ︸
inter-class variance

Discussion

E[Var[X | Y ]] measures intra-class variance because it’s the
expected variance of each group (the lower the variance of each
group, the lower the expected value). Likewise, Var[E[X | Y ]]
measures inter -class variance. The more different the groups
are from each other (measured by the difference between their
means), the larger the variance.
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Back to k-means

Recall that we got k-means’s cost function into the form
E[Var[X | S ]]. Let’s see what that means.

Define S to be a random variable (a function from
outcomes to real numbers) that assigns integer values to
each point x ∈ X , such that two points have the same
S(x) if and only if they’re in the same partition.
It may not seem morally correct to have S be a random
variable when it has no “randomness” whatsoever. Well, we
converted all the sums to expectation and variance already,
so we can just fit it into the tools we have.
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k-means Analysis

E[Var[X | S ]] =
∑
i

P(S = i) Var[X | S = i ]

where i is the values S can take on

=
∑
i

|Si |
|X |

∑
x |S(x)=i

P(x)‖x − µi‖2

=
1
|X |

∑
i

|Si |
∑

x |S(x)=i

1
|Si |
‖x − µi‖2

=
1
|X |

∑
i

∑
x |S(x)=i

‖x − µi‖2

which is just the cost function of k-means, as expected
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k-means interpretation

k-mean’s cost function is E[Var[X | S ]], or the inter-class
variance (we want to make the points inside each group as
close to each other as possible).
But we know from the law of total variance that
Var[X ] = E[Var[X | S ]] + Var[E[X | S ]].

So minimizing inter-class variance is equivalent to
maximizing intra-class variance. Making each group as
similar as possible must make the groups different from
each other.
There’s only so much variance to go around!
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Binarization

Suppose we have an image
We can greyscale by
averaging the channels
Then binarize the image
(make each pixel on or off)
This is implicitly done in
edge detection

Binary image

Figure: An image binarized with
Otsu’s binarization.
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Cost Function

How should we measure the effectiveness?

Well, we’re splitting the pixels into two groups. Minimize
the variance of each group, weighted by the size of the
group (to minimize the expected variance).
This is identical to k-means with k = 2.
However, the standard k-means algorithm is suboptimal
and may take longer than we want. Can we do optimal
k-means efficiently if we know the data is one-dimensional
and k = 2?
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Otsu’s Binarization, Justification

There are efficient algorithms for 1D k-means, see Fast
Exact k-Means, k-Medians and Bregman Divergence
Clustering in 1D.

However, these algorithms are pretty complicated.
Can we make use of k = 2?
The key observation is that if we place two centers, there’s
only one point equidistant to those centers, at their
midpoint. Anything to the left of the midpoint is assigned
to one center and anything to the right the other.
In 1D and with k = 2, we have exactly one threshold
value. How many possible thresholds are there?

https://arxiv.org/abs/1701.07204
https://arxiv.org/abs/1701.07204
https://arxiv.org/abs/1701.07204
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Clustering in 1D.
However, these algorithms are pretty complicated.
Can we make use of k = 2?

The key observation is that if we place two centers, there’s
only one point equidistant to those centers, at their
midpoint. Anything to the left of the midpoint is assigned
to one center and anything to the right the other.
In 1D and with k = 2, we have exactly one threshold
value. How many possible thresholds are there?
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Otsu’s Binarization, Summary

Iterate over the 256 possible thresholds
Maintain statistics counters
Compute the expected variance after each split
Pick the threshold with the smallest intra-class variance
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Inter-class Variance

Standard approach: minimizing intra-class variance is
maximizing inter-class variance.

By definition of variance,
Var[E[X | Y ]] = E[(E[X | Y ]− E[E[X | Y ]])2]

Using the law of total expectation,
= E[(E[X | Y ]− E[X ])2]

=
∑
i

P(Y = i)(E[X | Y = i ]− E[X ])2

To make the notation more concise, let the inter-class variance
be σ2B , P(Y = i) be ωi , and E[X | Y = i ] be µi :

σ2B = ω0(µ0 − µ)2 + ω1(µ1 − µ)2
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Inter-class Variance, Continued

σ2B = ω0(µ0 − µ)2 + ω1(µ1 − µ)2

= ω0[µ20 − 2µ0µ+ µ2] + ω1[µ21 − 2µ1µ+ µ2]

= ω0µ
2
0 + ω1µ

2
1 − 2µ(ω0µ0 + ω1µ1) + µ2(ω0 + ω1)

We know ω0 + ω1 = 1 because they’re probabilities and
ω0µ0 + ω1µ1 = E[E[X | Y ]] = E[X ] = µ so

= ω0µ
2
0 + ω1µ

2
1 − µ2

= ω0µ
2
0 + ω1µ

2
1 − (ω0µ0 + ω1µ1)2

= (ω0 − ω2
0)µ20 − 2ω0ω1µ0µ1 + (ω1 − ω2

1)µ21

= ω0(1− ω0)µ20 − 2ω0ω1µ0µ1 + ω1(1− ω1)µ21

We know 1− ω0 = ω1 and likewise for 1− ω1,

= ω0ω1µ
2
0 − 2ω0ω1µ0µ1 + ω0ω1µ

2
1 = ω0ω1(µ0 − µ1)2
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Algorithm Overview

1 Precompute the number of pixels of each intensity
2 Iterate over possible thresholds, maintaining counters
3 Compute threshold which maximizes inter-class variance
4 Binarize image with optimal threshold
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Image distribution

frequency counts of each pixel
def histogram(img: np.array) -> np.array:

""" Computes the distribution of the image. """
p = np.zeros(256, dtype=np.int)
for x in img.flatten():

p[x] += 1
return p
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Algorithm Details

We need to keep track of ω0 and µ0
Can compute ω1 and µ1 by subtraction
Easier if they are not fractions but integer counts, i.e.
W0 = |S0| = |X |ω0 and
A0 =

∑
x |S(x)=0 x = |S0|µ0

We know we’re scanning in terms of increasing threshold t

So the only change is going to be pixels with intensity t

Then the update is just W0 + p[t] and A0 + t p[t]

ω0 = W0
|X | and µ0 = A0

W0
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Algorithm Otsu’s binarization with inter-class variance

def otsu(img: np.array) -> np.array:
""" Applies Otsu's binarization to the image. """
h, n = histogram(img)
X0, X1, p = 0, img.sum(), 0
threshold, best = -1, 0
for t in range(256):

u1, u0 = t*h[t], h[t]
X0, X1, p = X0 + u1, X1 - u1, p + u0
if p > 0 and n - p > 0:

# divide by n^2 to get the true variance
var = p*(n - p)*(X0/p - X1/(n - p))**2
if var > best:

threshold, best = t, var
return __threshold(img, threshold)
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Binarization

Otsu’s binarization computes the optimal threshold.
We want a binary image.

thresholding
def __threshold(img: np.array, t: int) -> np.array:

""" Binarizes an image given a threshold. """
return 255*(img > t)

Whether it’s > or ≥ is arbitrary, just needs to be consistent.
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Intra-class Variance

We just spent a lot of time deriving inter-class variance.
We needed to use the law of total variance to show that
it’s the same as minimizing intra-class variance.
Why not just directly attack intra-class variance?

By the definition of expectation,

E[Var[X | Y ]] =
∑
i

P(Y = i) Var[X | Y = i ]

As usual, let the intra-class variance be σ2W , P(Y = i) be ωi ,
and Var[X | Y = i ] be σ2i :

σ2W = ω0σ
2
0 + ω1σ

2
1
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Intra-class Variance, Continued

Now let’s re-write the conditional variances using
Var[X | Y ] = E[X 2 | Y ]− E[X | Y ]2:

σ2W = ω0σ
2
0 + ω1σ

2
1

= ω0[

∑
x |S(x)=0 x

2

|S0|
− (

∑
x |S(x)=0 x

|S0|
)2]

+ ω1[

∑
x |S(x)=1 x

2

|S1|
− (

∑
x |S(x)=1 x

|S1|
)2]

To make the notation more concise,
let Wi = |Si | and

∑
xki =

∑
x |S(x)=i x

k :

=
W0

|X |
[

∑
x20

W0
− (

∑
x0

W0
)2] +

W1

|X |
[

∑
x21

W1
− (

∑
x1

W1
)2]
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Intra-class Variance, Continued

σ2W =
W0

|X |
[

∑
x20

W0
− (

∑
x0

W0
)2] +

W1

|X |
[

∑
x21

W1
− (

∑
x1

W1
)2]

=
1
|X |

([
∑

x20 −
(
∑

x0)2

W0
] + [

∑
x21 −

(
∑

x1)2

W1
])

Multiplying by |X | and re-arranging,

= [
∑

x20 +
∑

x21 ]− [
(
∑

x0)2

W0
+

(
∑

x1)2

W1
]

The first term is just the sum of squares for each x ∈ X , which
is a constant, and we can negate the second term, swapping the
objective. Finally, putting in terms of the counter variables:

=
(
∑

x0)2

W0
+

(
∑

x1)2

W1
=

A2
0

W0
+

A2
1

|X | −W0
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Algorithm Otsu’s binarization with intra-class variance

def otsu(img: np.array) -> np.array:
""" Applies Otsu's binarization to the image. """
h, n = histogram(img)
X0, X1, p = 0, img.sum(), 0
threshold, best = -1, X1*X1/n
for t in range(256):

u1, u0 = t*h[t], h[t]
X0, X1, p = X0 + u1, X1 - u1, p + u0
if p > 0 and n - p > 0:

# for true intra-class variance
# divide by -n then add E[X^2]
var = X0*X0/p + X1*X1/(n - p)
if var > best:

threshold, best = t, var
return __threshold(img, threshold)
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Commentary

Both approaches are O(n) (assuming fixed 8-bit color)
Both approaches generate identical thresholds (and images)
However, intra-class variance is simpler and easier to derive
It’s also easier to convert to pure integer arithmetic, by
storing fractions as numerator/denominator
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Example
Otsu’s binarization ran on an image

(a) The original image. (b) After Otsu’s binarization.

Figure: Before and after Otsu’s binarization.
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Histogram and Inter-class Variance over Thresholds

Figure: Inter-class variance over increasing threshold value.
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Last Comments

The image might have noise. Reduce noise with a Gaussian
kernel, averaging, or other techniques.
We’ve been using 8 bits per color channel for a pretty long
time. But there’s no reason why images with 16-bit color
or even 48-bit color won’t catch on. In that case Otsu’s
takes O(N2b) where b is the number of bits per channel,
which will not scale with increasing color depth.
People may need to quantize their images or apply a
sophisticated 1D k-means algorithm, optimized for k = 2.
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