
ML Chessboard Recognition
Stephen Huan



Overview

Computer vision component:

● Generate chessboard corner grid (9x9 evenly spaced)
● Rotate, translate, etc. to get “realistic” viewpoints

Self-supervised learning component:

● Remove certain % of grid points and add certain # of superfluous points
● Train NN to filter out extraneous points and fill in missing grid points



Perspective Projection



Objective

● Goal: generate realistic point grids
○ “Realistic” as in matching the empirical distribution of chessboards
○ Not looking straight down, has perspective effects, etc.

● Mathematical details are messy, therefore hard to generate
○ Also hard to have high-level control of generation

● Why not directly simulate?



Perspective Projection

● Render 3D points onto a 2D screen
● Mathematical details are unnecessary

○ Just needs to work
● Helpful Wikipedia link

Summary:

● Parameterize position of camera and screen
○ Need camera to be far enough away
○ Otherwise, points might go behind the camera…
○ Distance of screen determines spacing of grid

● Rotate 3D “object” points to rotate chessboard

https://en.wikipedia.org/wiki/3D_projection#Mathematical_formula


Details, code

● Start with ideal grid centered at (0, 0), on the plane z = 0
○ [(-4, -4, 0), (-4, -3, 0), … (0, 0), … (4, 3, 0), (4, 4, 0)] 

● Apply rotation matrix to grid

● This may make z != 0 if 𝜃x or 𝜃y != 0, hence truly 3D points
○ Need camera far enough from points to avoid points rotating behind camera
○ z > 5 is sufficient, for simplicity let z = 10 so camera is placed at [0, 0, 10]

● Apply perspective projection transformation matrix

https://gist.github.com/stephen-huan/65c926b503ca810a229047d8cb33c5e8#file-grid-py-L11-L47


Generating a Random Grid, code

● Sample angle [𝜃x , 𝜃y , 𝜃z] from [-𝜋/4, 𝜋/4) uniformly
● Recall camera fixed at [0, 0, 10]
● Place screen at [0, 0, d], d controls the spacing of the grid

○ e.g. if looking directly down d = 50 implies points d/10 = 5 pixels apart
● However, rotation will make points closer/farther apart
● Sample d from [H*25/64, H*25/32] is a good heuristic

○ Assuming height H is less than or equal to the width of the image, W
● Finally, pick translation such that points are contained within image
● Let x0 , x1 , y0 , y1 be the bounding box of the points
● Sample translation tx from [-x0 , H - x1] and ty from [-y0 , W - y1]
● Guarantees final points within rectangle (0, 0) to (H, W)

https://gist.github.com/stephen-huan/65c926b503ca810a229047d8cb33c5e8#file-grid-py-L49-L73


Self-supervised Learning



Adding Noise, code

● Want neural network to identify ground truth grid
● Generate pairs of (noisy grid, ground truth grid)
● (X, y) training pairs, y generated by previous slides
● Start with point list y
● Remove random percentage of grid points

○ Between 0 to 0.5 of grid points (arbitrary choice)
● Add random number of random points

○ Between 0 to 100 random points (also mostly arbitrary)

https://gist.github.com/stephen-huan/65c926b503ca810a229047d8cb33c5e8#file-grid-py-L75-L85


Architecture

● Representation?
○ List of points vs. binary image

● If list of points: use fully connected NN
● Problem: need set point order, not invariant to permutation
● Opinion: Binary image is a nicer representation

○ Also allows for convolution neural network (CNN)
● Image to image prediction
● Sample down with pooling, then upsample with transposed layers

○ See Chapter 14 “Deep Computer Vision Using Convolutional Neural Networks”
○ Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow



Summary, code

https://gist.github.com/stephen-huan/65c926b503ca810a229047d8cb33c5e8#file-corner-py-L20-L39


Technical Details

● Need output to be between 0 and 1 to be a valid probability
○ Classic choice would be sigmoid
○ Sigmoid doesn’t work that well, tanh(reLU(x)) works better for some reason

● binary_crossentropy would be the standard loss for binary classification
● mean_squared_error works better
● These losses are relatively uninformative, > 99% of the image is black
● Also keep track of:

○ precision: % of predicted grid points that are actually part of the grid
○ recall: % of grid points that were predicted to be part of the grid

● Model usually has low recall (~60%, unable to fill in missing points)
● Decent precision (~80%)



Input Output Expected Input Output Expected



Analysis

● Acts more like a “filter” than a generator
○ Able to remove extraneous points but not able to fill in missing points

● Filtering ability is better with more original grid points
○ If given grid with many holes, starts to filter out grid points

● Architectural improvements?
○ Experiment with filter size, pooling, etc.



Code

Implementation 

https://github.com/stephen-huan/cs-lectures/tree/master/computer-vision/chessboard-recognition

