ML Chessboard Recognition

Stephen Huan

Overview

Computer vision component:

- Generate chessboard corner grid (9x9 evenly spaced)
- Rotate, translate, etc. to get "realistic" viewpoints

Self-supervised learning component:

- Remove certain % of grid points and add certain # of superfluous points
- Train NN to filter out extraneous points and fill in missing grid points

Perspective Projection

Objective

- Goal: generate realistic point grids
 - "Realistic" as in matching the empirical distribution of chessboards
 - Not looking straight down, has perspective effects, etc.
- Mathematical details are messy, therefore hard to generate
 - Also hard to have high-level control of generation
- Why not directly simulate?

Perspective Projection

- Render 3D points onto a 2D screen
- Mathematical details are unnecessary
 - Just needs to work
- Helpful Wikipedia link

Summary:

- Parameterize position of camera and screen
 - Need camera to be far enough away
 - Otherwise, points might go behind the camera...
 - Distance of screen determines spacing of grid
- Rotate 3D "object" points to rotate chessboard

Details, <u>code</u>

- Start with ideal grid centered at (0, 0), on the plane z = 0
 [(-4, -4, 0), (-4, -3, 0), ... (0, 0), ... (4, 3, 0), (4, 4, 0)]
- Apply rotation matrix to grid

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_x) & \sin(\theta_x) \\ 0 & -\sin(\theta_x) & \cos(\theta_x) \end{bmatrix} \begin{bmatrix} \cos(\theta_y) & 0 & -\sin(\theta_y) \\ 0 & 1 & 0 \\ \sin(\theta_y) & 0 & \cos(\theta_y) \end{bmatrix} \begin{bmatrix} \cos(\theta_z) & \sin(\theta_z) & 0 \\ -\sin(\theta_z) & \cos(\theta_z) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- This may make $z \ge 0$ if θ_x or $\theta_y \ge 0$, hence truly 3D points
 - Need camera far enough from points to avoid points rotating behind camera
 - \circ z > 5 is sufficient, for simplicity let z = 10 so camera is placed at [0, 0, 10]
- Apply perspective projection transformation matrix

$$egin{bmatrix} \mathbf{f}_x \ \mathbf{f}_y \ \mathbf{f}_w \end{bmatrix} = egin{bmatrix} 1 & 0 & rac{\mathbf{e}_x}{\mathbf{e}_z} \ 0 & 1 & rac{\mathbf{e}_y}{\mathbf{e}_z} \ 0 & 0 & rac{1}{\mathbf{e}_z} \end{bmatrix} egin{bmatrix} \mathbf{d}_x \ \mathbf{d}_y \ \mathbf{d}_z \end{bmatrix}$$

20			 14		

Generating a Random Grid, code

- Sample angle $[\theta_x, \theta_y, \theta_z]$ from $[-\pi/4, \pi/4)$ uniformly
- Recall camera fixed at [0, 0, 10]
- Place screen at [0, 0, *d*], *d* controls the spacing of the grid
 - e.g. if looking directly down d = 50 implies points d/10 = 5 pixels apart
- However, rotation will make points closer/farther apart
- Sample *d* from [*H**25/64, *H**25/32] is a good heuristic
 - Assuming height H is less than or equal to the width of the image, W
- Finally, pick translation such that points are contained within image
- Let x_0, x_1, y_0, y_1 be the bounding box of the points
- Sample translation t_x from $[-x_0, H x_1]$ and t_y from $[-y_0, W y_1]$
- Guarantees final points within rectangle (0, 0) to (H, W)

Self-supervised Learning

Adding Noise, code

- Want neural network to identify ground truth grid
- Generate pairs of (noisy grid, ground truth grid)
- (*X*, *y*) training pairs, *y* generated by previous slides
- Start with point list y
- Remove random percentage of grid points
 - Between 0 to 0.5 of grid points (arbitrary choice)
- Add random number of random points
 - Between 0 to 100 random points (also mostly arbitrary)

Architecture

- Representation?
 - List of points vs. binary image
- If list of points: use fully connected NN
- Problem: need set point order, not invariant to permutation
- Opinion: Binary image is a nicer representation
 - Also allows for convolution neural network (CNN)
- Image to image prediction
- Sample down with pooling, then upsample with transposed layers
 - See Chapter 14 "Deep Computer Vision Using Convolutional Neural Networks"
 - Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow

Summary, code

```
kwargs = {"padding": "same", "activation": "relu"}
model = keras.models.Sequential([
    # downscale
    layers.Conv2D(16, (3, 3), input_shape=X_train[0].shape, **kwargs),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(32, (5, 5), **kwargs),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(32, (7, 7), **kwargs),
    # upscale
    layers.Conv2DTranspose(16, (7, 7), strides=2, **kwargs),
    layers.Conv2D(8, (3, 3), **kwargs),
    layers.Conv2DTranspose(4, (5, 5), strides=2, **kwargs),
    # flatten to output with 1D convolution, make sure between 0 and 1
    # sigmoid doesn't work too well, use tanh(relu(x))
    layers.Conv2D(1, (1, 1), activation="tanh"),
    layers.ReLU(),
1)
```

Model: "sequential"

Output	Shape	Param #
(None,	128, 128, 16)	160
(None,	64, 64, 16)	0
(None,	64, 64, 32)	12832
(None,	32, 32, 32)	0
(None,	32, 32, 32)	50208
(None,	64, 64, 16)	25104
(None,	64, 64, 8)	1160
(None,	128, 128, 4)	804
(None,	128, 128, 1)	5
(None,	128, 128, 1)	0
	(None, (None, (None, (None, (None, (None, (None, (None,	Output Shape (None, 128, 128, 16) (None, 64, 64, 16) (None, 64, 64, 32) (None, 32, 32, 32) (None, 32, 32, 32) (None, 64, 64, 16) (None, 64, 64, 8) (None, 128, 128, 4) (None, 128, 128, 1) (None, 128, 128, 1)

Technical Details

- Need output to be between 0 and 1 to be a valid probability
 - Classic choice would be sigmoid
 - Sigmoid doesn't work that well, tanh(reLU(x)) works better for some reason
- binary_crossentropy would be the standard loss for binary classification
- mean_squared_error works better
- These losses are relatively uninformative, > 99% of the image is black
- Also keep track of:
 - precision: % of predicted grid points that are actually part of the grid
 - recall: % of grid points that were predicted to be part of the grid
- Model usually has low recall (~60%, unable to fill in missing points)
- Decent precision (~80%)

Analysis

- Acts more like a "filter" than a generator
 - Able to remove extraneous points but not able to fill in missing points
- Filtering ability is better with more original grid points
 - If given grid with many holes, starts to filter out grid points
- Architectural improvements?
 - Experiment with filter size, pooling, etc.

Implementation