ML Chessboard Recognition

Stephen Huan

Overview

Computer vision component:

- Generate chessboard corner grid (9x9 evenly spaced)
- Rotate, translate, etc. to get "realistic" viewpoints

Self-supervised learning component:

- Remove certain \% of grid points and add certain \# of superfluous points
- Train NN to filter out extraneous points and fill in missing grid points

Perspective Projection

Objective

- Goal: generate realistic point grids
- "Realistic" as in matching the empirical distribution of chessboards
- Not looking straight down, has perspective effects, etc.
- Mathematical details are messy, therefore hard to generate
- Also hard to have high-level control of generation
- Why not directly simulate?

Perspective Projection

- Render 3D points onto a 2D screen
- Mathematical details are unnecessary
- Just needs to work
- Helpful Wikipedia link

Summary:

- Parameterize position of camera and screen
- Need camera to be far enough away
- Otherwise, points might go behind the camera...
- Distance of screen determines spacing of grid
- Rotate 3D "object" points to rotate chessboard

Details, code

- Start with ideal grid centered at $(0,0)$, on the plane $z=0$
- $[(-4,-4,0),(-4,-3,0), \ldots(0,0), \ldots(4,3,0),(4,4,0)]$
- Apply rotation matrix to grid

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \left(\theta_{x}\right) & \sin \left(\theta_{x}\right) \\
0 & -\sin \left(\theta_{x}\right) & \cos \left(\theta_{x}\right)
\end{array}\right]\left[\begin{array}{ccc}
\cos \left(\theta_{y}\right) & 0 & -\sin \left(\theta_{y}\right) \\
0 & 1 & 0 \\
\sin \left(\theta_{y}\right) & 0 & \cos \left(\theta_{y}\right)
\end{array}\right]\left[\begin{array}{ccc}
\cos \left(\theta_{z}\right) & \sin \left(\theta_{z}\right) & 0 \\
-\sin \left(\theta_{z}\right) & \cos \left(\theta_{z}\right) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- This may make $z!=0$ if θ_{x} or $\theta_{y}!=0$, hence truly 3 D points
- Need camera far enough from points to avoid points rotating behind camera
- $\quad z>5$ is sufficient, for simplicity let $z=10$ so camera is placed at $[0,0,10]$
- Apply perspective projection transformation matrix

$$
\left[\begin{array}{c}
\mathbf{f}_{x} \\
\mathbf{f}_{y} \\
\mathbf{f}_{w}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & \frac{\mathbf{e}_{x}}{\mathbf{e}_{z}} \\
0 & 1 & \frac{\mathbf{e}_{y}}{\mathbf{e}_{z}} \\
0 & 0 & \frac{1}{\mathbf{e}_{z}}
\end{array}\right]\left[\begin{array}{l}
\mathbf{d}_{x} \\
\mathbf{d}_{y} \\
\mathbf{d}_{z}
\end{array}\right]
$$

Generating a Random Grid, code

- Sample angle $\left[\theta_{x}, \theta_{y}, \theta_{z}\right]$ from $[-\pi / 4, \pi / 4)$ uniformly
- Recall camera fixed at [0, 0, 10]
- Place screen at $[0,0, d], d$ controls the spacing of the grid
- e.g. if looking directly down $d=50$ implies points $d / 10=5$ pixels apart
- However, rotation will make points closer/farther apart
- Sample d from $\left[H^{*} 25 / 64, H^{*} 25 / 32\right]$ is a good heuristic
- Assuming height H is less than or equal to the width of the image, W
- Finally, pick translation such that points are contained within image
- Let $x_{0}, x_{1}, y_{0}, y_{1}$ be the bounding box of the points
- Sample translation t_{x} from $\left[-x_{0}, H-x_{1}\right]$ and t_{y} from $\left[-y_{0}, W-y_{1}\right]$
- Guarantees final points within rectangle $(0,0)$ to (H, W)

Self-supervised Learning

Adding Noise, code

- Want neural network to identify ground truth grid
- Generate pairs of (noisy grid, ground truth grid)
- (X, y) training pairs, y generated by previous slides
- Start with point list y
- Remove random percentage of grid points
- Between 0 to 0.5 of grid points (arbitrary choice)
- Add random number of random points
- Between 0 to 100 random points (also mostly arbitrary)

Architecture

- Representation?
- List of points vs. binary image
- If list of points: use fully connected NN
- Problem: need set point order, not invariant to permutation
- Opinion: Binary image is a nicer representation
- Also allows for convolution neural network (CNN)
- Image to image prediction
- Sample down with pooling, then upsample with transposed layers
- See Chapter 14 "Deep Computer Vision Using Convolutional Neural Networks"
- Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow

Summary, code

```
kwargs = {"padding": "same", "activation": "relu"}
```

model = keras.models.Sequential([
\# downscale layers.Conv2D(16, (3, 3), input_shape=X_train[0].shape, **kwargs), layers. Conv2D(16, (3, ${ }^{\text {layers. MaxPooling2D(}(2,2)) \text {, }}$ layers. Conv2D (32, (5, 5), **kwargs), layers.MaxPooling2D((2, 2)),
layers. Conv2D(32, (7, 7), **kwargs), \# upscale
layers. Conv2DTranspose (16, (7, 7), strides=2, **kwargs), layers. Conv2D (8, (3, 3), **kwargs), layers.Conv2DTranspose(4, (5, 5), strides=2, **kwargs), \# flatten to output with ID convolution, make sure between 0 and \# sigmoid doesn't work too well, use tanh(relu(x))
layers.Conv2D(1, (1, 1), activation="tanh"),
layers.ReLU(),
])
Model: "sequential"

Layer (type) ============================= conv2d (Conv2D)	Output Shape (None, 128, 128, 16)	$\begin{aligned} & \text { Param \# } \\ & ========== \\ & 160 \end{aligned}$
max_pooling2d (MaxPooling2D)	(None, 64, 64, 16)	0
conv2d_1 (Conv2D)	(None, 64, 64, 32)	12832
max_pooling2d_1 (MaxPooling2	(None, 32, 32, 32)	0
conv2d_2 (Conv2D)	(None, 32, 32, 32)	50208
conv2d_transpose (Conv2DTran	(None, 64, 64, 16)	25104
conv2d_3 (Conv2D)	(None, 64, 64, 8)	1160
conv2d_transpose_1 (Conv2DTr	(None, 128, 128, 4)	804
conv2d_4 (Conv2D)	(None, 128, 128, 1)	5
re_lu (ReLU)	(None, 128, 128, 1)	0
Total params: 90,273 Trainable params: 90,273 Non-trainable params: 0	====================	

Technical Details

- Need output to be between 0 and 1 to be a valid probability
- Classic choice would be sigmoid
- Sigmoid doesn't work that well, tanh $(\operatorname{reLU}(x))$ works better for some reason
- binary_crossentropy would be the standard loss for binary classification
- mean_squared_error works better
- These losses are relatively uninformative, $>99 \%$ of the image is black
- Also keep track of:
- precision: \% of predicted grid points that are actually part of the grid
- recall: \% of grid points that were predicted to be part of the grid
- Model usually has low recall ($\sim 60 \%$, unable to fill in missing points)
- Decent precision ($\sim 80 \%$)

Analysis

- Acts more like a "filter" than a generator
- Able to remove extraneous points but not able to fill in missing points
- Filtering ability is better with more original grid points
- If given grid with many holes, starts to filter out grid points
- Architectural improvements?
- Experiment with filter size, pooling, etc.

Code

Implementation

