ML Chessboard Recognition
Part 2

Stephen Huan

Overview

e See previous lecture (in references)
e We have a neural net that acts like a filter
e Integrate into existing corner detection algorithms

Steps

Apply OpenCV’s function goodFeaturesToTrack to get initial corners
Binarize the image in preparation for neural network input

Run neural network

Extract top X corners from output

Binarize image with Otsu’s binarization

abkrowbh-~

https://stephen-huan.github.io/assets/pdfs/cs-lectures/computer-vision/otsu-binarization/handout.pdf

Step 0: Loading and Preprocessing the Image

load image and greyscale
img = cv.imread(path)
grey = cv.cvtColor(img, cv.COLOR_BGR2GRAY)

Step 1: goodFeaturesToTrack

e Use OpenCV’s function to get initial corners

e Ask it for more corners than we need to get as many corners as possible
e \We will filter extraneous corners later
get initial corners

corners = cv.goodFeaturesToTrack(grey, round(1.5%81), 0.01, 10)
corners = np.int@(corners)

cv.imwrite(f"output/{fname}/1.jpg", render_points(img, corners))

2
e
()
c
o
o]
o
n
>
o]
()

Step 2: Binarize the image

e Neural network takes binary image as output and outputs binary image
e Convert corner data into binary image

e Also make image height/width the same by implicitly padding

render binary 1image
binary = np.zeros((WIDTH, HEIGHT), np.float)
for 1 1n corners:

X, Yy = i.ravel()

binaryl[y][x] =1
cv.imwrite(f"output/{fname}/2.jpg", 255%binary)

Step 3: Run Neural Network

e We have a neural network trained to remove extraneous points
e See previous lecture for training information

e Takes a binary image and outputs an image of confidences

load pre-trained neural network

model = keras.models.load _model(f"models/mode L{WIDTH}x{HEIGHT}")
yp = model.predict(binary.reshape(1, WIDTH, HEIGHT, 1))
yp = ypl0@].reshape(256, 256)

cv.imwrite(f"output/{fname}/3.jpg", tf.math.round(255%yp).numpy())

« slightly dimmer

Step 4: Extract Best Corners

e Take the top 81 corners with the highest confidence as final corners

take top 81 intensities
threshold = sorted(yp.ravel(), reverse=True) [81]

points = np.array([(x, y) for x in range(WIDTH) for y in range(HEIGHT)
if yplyl[x] > threshold])
cv.imwrite(f"output/{fname}/4.jpg", render_points(img, points))

Step 5: Otsu’s Binarization

Binarize just the chessboard

But OpenCV'’s API only runs on images, which are matrices
Chessboard isn’t rectangular because of perspective

Could use our own Otsu’s implementation which works on sets of pixels
Or we could use a sampling trick

Sampling Trick

Problem: pixels outside of chessboard included in bounding box

Solution: re-sample these pixels according to the chessboard distribution
This maintains the same image distribution Ot Bnonzaton Over imege DiTbiton___
Guarantees the proper threshold is picked

0.10 A mam distribution

Frequency
= o
o (=]
o (=]
)

o
o
&

o
o
N

0.00 - - J

0 50 100 150 200 250
Intensity

Figure: Inter-class variance over increasing threshold value.

def binary_iid(img: np.array, points: np.array, rect: bool=False) -> np.array:
""" Bounding box contains extraneous pixels, sample pixels outside
of chessboard i.i.d. from chessboard distribution which maintains
original distribution therefore not affecting Otsu's binarization. """
find bounding box
X, y = points[:, 0], points[:, 1]
i, j, k, 1 = np.min(x), np.max(x), np.min(y), np.max(y)
box = np.array(imgl[i:j + 1, k:1 + 1])
find chessboard mask
hull = cv.convexHull(points)
mask [[cv.pointPolygonTest(hull, (x + i, y + k), measureDist=False) >= 0
for y in range(box.shape[1])] for x in range(box.shape[0])]
mask, on = np.array(mask, dtype=bool), np.sum(mask)
generate chessboard pixel distribution
p = np.zeros(1l << 8, dtype=np.float64)
for v in box[mask]:
plvl += 1
p /= on
replace pixels outside of chessboard with i.i.d. sample
box[~mask] = rng.choice(256, np.prod(box.shape) - on, p=p)
apply blurring then thresholding
blur = cv.GaussianBlur(box, (5, 5), 0)
ret, dst = cv.threshold(blur, @, 255, cv.THRESH_BINARY + cv.THRESH_OTSU)
img[i:j + 1, k:1 + 1] [mask] = dst[mask]
return img

Additional Examples

initial corners after NN binary

References

Implementation

ML Chessboard Recognition Part 1

My lecture on Otsu’s binarization

OpenCV documentation: Shi-Tomasi Corner Detector

https://github.com/stephen-huan/cs-lectures/tree/master/computer-vision/chessboard-recognition
https://docs.google.com/presentation/d/10itvI75JGUYMXxGsJWE88ZogLPrzJSDJ9z4w4koN2vs/edit#slide=id.p
https://stephen-huan.github.io/assets/pdfs/cs-lectures/computer-vision/otsu-binarization/handout.pdf
https://docs.opencv.org/master/d4/d8c/tutorial_py_shi_tomasi.html

