No Game (Theory) No Life: The Machine Learning
Approach to Playing Games

Stephen Huan
April 27, 2020

ool

NO GAME"'NO L I F
N=SET

Figure 1: No Game (Theory) No Life [1]

1 Introduction

Contrary to its name, game theory has deep implications beyond playing games very
well - life itself can be thought of as a difficult game.

A connection between game theory and cutting edge machine learning exists under a
mathematical intrepretation of Generative Adversarial Networks (GANSs) - many papers
describe GANs as playing a minimax game and converging to a Nash equilibrium. A
machine learning club lecture was written on this topic [2]. Another connection exists
when considering Reinforcement Learning (RL) as commonly applied to game-playing
(exemplified by Google DeepMind’s recent Go, Shogi, and Chess RL system called Al-
phaZero [3]). RL, however, is a more general technique that has often been applied to
robotics (see OpenAl’s robot hand that solves a Rubik’s cube [1]). Notably, GANs, RL,
and energy based models (EBMs) are all mathematically equivalent (under certain con-
ditions) [5] which gives a nontrivial reason to study game theory - it advances the cutting
edge of machine learning as advances in playing games directly leads to advancements
in GANs, RL, and EBMs.

2 Algorithms

2.1 Minimax

Minimax is a perfect information game (i.e., a game without hidden states) player. It
views a game as a tree of states, with actions being state transitions (edges in the tree)
and attempts to pick the best subtree at each node. It does this via a depth-first search:
one move away from an end game state, the best move is obvious - the move that
maximizes the immediate utility. Two moves away, it has the score of all its children,
and just pick the best moves from those. Move up the tree and it can reconstruct the
optimal move for each state.

However it’s infeasible to actually compute the entire game tree for a nontrivial game.
Therefore, we need to use a heuristic which caps the search depth to something that is
reasonable and is usually human designed (see the Othello project in AI).

One such approach to creating a good Othello player is documented in the Logis-
thello bot [6]. He essentially assumed the heuristic was a linear function of features
he hand-defined, and solved linear equations for an optimal heuristic iteratively with
backpropagation (neural networks weren’t as popular in the 90’s). The ideal heuristic is
obviously the actual utility function - whether one wins or loses from a given position
given optimal play, and having to select features by hand is time consuming, requires a
in-depth knowledge of the given domain, and may not be optimal. One might consider
training a neural network to estimate the true utility function but there is a paradox
- where does one get the training data for optimal play when one doesn’t know how
to play optimally? Logisthello used human Othello games but obviously that may not
be optimal. This paradox is usually resolved through self-play, where the machine gets
iteratively better as more games are played.

2.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is an algorithm similar to Minimax in the sense that
both are tree searches. However, MCTS is more in line with the “self-play” philosophy
- it essentially uses the result of a large number of random games as heuristic for how
good a particular position is. MCTS was used by the AlphaZero system along with RL.

3 Counterfactual Regret Minimization

Both algorithms, however, require perfect information. In real life, however, we rarely
have perfect information - one is often uncertain excactly what effect an action can have
and other variables. One such problem is Reconnaissance Blind Chess (RBC), proposed
by John Hopkin’s Applied Physics Lab [7]. RBC is played like regular chess except one
does not know what move their opponent made. Instead, every turn each player can
“sense” a 3x3 region on the board and learn the positions of every piece in that region.
Minimax, MCTS, and RL do not apply well to such a game. Thus, the creation of
another algorithm is necessary to account for uncertainty.

3.1 Definitions

For a perfect information game, playing a game “optimally” is well defined because each
state has exactly one “optimal” move. However, for a game with uncertainty, what does
it even mean to play optimally?

For simplicity, let us simplify games into normal-form games [3]. A normal-form
game is game with N, the set of n players, S;, the actions for a player i, A, the
set containing all possible combinations of actions for each player, and u, the vector
giving wutilities (the rewards) for each player (a particular player’s utility is u;). These
games are commonly represented by tables, where the row player is player 0 and the
column player is player 1. An entry in the table is pair of numbers in the form (ug,u1),
representing the utility for player 0 and player 1.

R P S
R[0,0]-1,1]1
Pl1,-1|0,0|-1,1
S|-1,1]1,-1| 0,0

Table 1: The payoff table for rock paper scissors

A game is zero-sum if each entry adds up to 0. Finally, a strategy for a game is
a function representing the probablity that an action is chosen. We notate strategies
as o;(s), representing the probability for player i to use action s € S;. —i refers to the
opponent, so in the case of two players S_; = S1_;.

Since games under uncertainty are played in a probabilistic manner, playing the same
strategies against each other multiple times will have different results. Rather than track
simple win/losses for a single game, we instead define the expected utility, the amount
of utility that the player expects to get per game over the long term. The definition of
expected value is sum of each value times the probability of that value occuring. To use
this definition in our game, we sum over each possible value (each entry in the table)
and the probability that such a value occurs takes into account both player’s strategies.

wi(og,0-;) = Z Z oi(s)o_i(s)ui(s,s)

s€eS; s'eS_;

Under this framework, we finally arrive at the defintion of optimal play for uncertain
games. A best response strategy is one that maximizes a player’s expected utility, given
the strategies of the opponent(s). If both players play best responses, the combination
of strategies is the Nash equilibrium. As we shall see, one intrepretation of the Nash
equilibrium is that players cannot change strategies to gain an advantage - any change
in strategy will yield the same expected utility (this is consistent with the definition of
“maximizing” because, intuitively, any movement yields the same function value, so our
current position must be a local extrema). A player is indifferent if all actions have
the same utility. If both players are indifferent, than that is a Nash equilibrium.

3.2 Examples
3.2.1 Rock Paper Scissors (RPS)

It seems obvious that the optimal strategy for RPS is to play rock with % probability, and
the same for paper and scissors. Suppose that one deviated from the optimal strategy
and played % rock, i scissors, and % paper. What would the optimal response be? Basic
analysis shows that it would be to punish the over-emphasis on rock as much as possible,
by always playing paper (a strategy always playing a single action is known as a pure
strategy, and a non-pure strategy is a mized strategy). The strategy of always playing
paper yields an expected value of %(1) + %(—1) + %(0) = %. Since playing any action with
greater than % leads to a pure strategy punishing that deviation, the optimal strategy
must be the one stated above.

We can also reason why the the solution fulfills our definition of the Nash equilibrium.

Computing the expected values for playing rock, paper, and scissors:

g = é(O) + %(—1) + %(1) — 0
1 1 1

up=3(1) +5(0)+ 5(-1) =0
1 1 1

ug = 3(=1) + 5(1) + 3(0) =0

Since the expected value for playing any action is the same, we are indifferent, and
so it must be the Nash equilibrium.

3.2.2 Pure Strategies

We saw in RPS that a deviation from the Nash equilibrium led to a pure strategy being
optimal to take advantage of that deviation. Is that generally true? The answer is yes,
and to prove it requires a basic understanding on linear programming. In normal-form
games, our expected utility must be a linear function of the probabilities. The constraint
on the probabilities is that they sum to one and that each probability is greater or equal
to 0. Given a linear objective function we want to maximize and a linear constraint,
linear programming states that the optimal value occurs at a vertex of the simplex, or
the region of feasible values for each parameter. Since the constraint x1+xo+---4+x, =1
along with x; > 0 has a feasible region which is the hyperplane’s intersection with each
axis, the vertex of the simplex must be when one probability is 1 and the rest are 0,
fulfilling the definition of a pure strategy.

3.2.3 A Variant of RPS

To see one way to compute the Nash equilibrium for normal-form games, one needs to
have a less obviously solved game. Consider RPS, but one player is handicapped in the
sense that they are at a disadvantage if they play scissors. All interactions are identical
to standard RPS except when player 1 plays scissors: player one scissors loses against
player two scissors, ties against player two paper, and loses against player two rock.

—
=

>

Ol
= JERE

£
N
-

%

v

2|

Figure 2: Utility table for the game (from No Game No Life episode 2, circa 5 minutes)

Let us calculate the best response strategy for Stephanie, the girl on the right. Let
player 0 be Sora, the boy on the left, and player 1 be Stephanie. Let p1 = o1(R),
p2 = 01(S), and p3 = 01(P) (encapsulating Stephanie’s strategy). We have:

ur = p1(—1) +p2(0) + p3(—1) = —p1 — p3
s =p1(=1) +p2(=1) + p3(0) = —p1 — p2
up = p1(1) +p2(—=1) +p3(0) = p1 — p2
pr+p2t+p3=1

~ ~ —~~
w N
— — ~— ~—

Let up = ug = up, giving us three equations and set (2) equal to (3):

—P1—P2=DP1— P2
p1=0
Set (1) equal to (2):

—P1 —P3 = —pP1— D2
b2 =Dp3

Because of (4), p2 = % and p3 = % Thus, the optimal strategy for Stephanie is to
never play rock and flip a coin between scissors and paper. Doing similar logic for Sora,
his optimal strategy is to play [% }L }1] . Using the expected value formula from earlier,
Stephanie’s expected value is % and since this is a zero-sum game, Sora’s is —1

2

Figure 3: The end result of the game, which is consistent with our calculations.

3.3 Regret

Normal-form games can be solved as a linear system of equations as shown above. How-
ever, for games that are not normal-form, a more general algorithm is necessary to
calculate the Nash equilibrium. One such algorithm is based off the concept of regret.

Suppose we are playing (standard) RPS and we played rock while our opponent
played paper. We regret not playing paper and drawing, but we regret not playing
scissors, and winning, even more. Regret of an action is formally defined as the dif-
ference between the utility of that action and the action we originally chose. Given
this definition, we regretted not playing paper 1 (0 — (—1)) and not playing scissors 2
(1 —(—1)). In order to use regret to find the Nash equilibrium, one obvious goal is to
minimize regret. However, simply picking the action we regret most at a point in time
is ineffective as our opponent can track our regrets and predict our actions. Instead, we
use regret matching, or creating a strategy where the probability of playing an action
is proportional to the amount we regret not playing it. In order to turn our regrets
into probabilities, take the sum of all the positive regrets (if the regrets are negative,
we will never play those actions). Then, the probability of playing a given action is the
amount we regret it divided by the total regret. However, even regret matching doesn’t
guarentee convergence to the Nash equilibrium. Instead, the average of the strategies
generated by regret matching converges to the Nash equilibrium as the number of trials
approaches infinity. The algorithm is as follows:

e Initialize regrets to 0
e For some number of iterations:

— Compute a strategy with regret-matching

— Add the strategy to the cumulative strategy sum
— Select actions based off the strategy

— Compute regrets

— Add the regrets to the cumulative regrets

e Return the average strategy, the strategy sum divided by the number of iterations

It is not obvious how this algorithm generalizes to non normal-games, but it basically
becomes a tree search similar to minimax. The resulting algorithm is called counter-
factual regret minimization (CFR) and is extremely general and can be applied to non
normal-games, like Poker and RBC.

However, CFR has the same problems as minimax, namely the tree size growing
exponentially, making a full traversal impractical. One way to resolve this is to use Monte
Carlo methods, in a similar way to MCTS [9], creating Monte Carlo CFR (MCCFR).
Instead of searching through every possible action, one can randomly sample a subset
of the possible actions. Another way to resolve this is to use a heuristic, but in this case
the “heuristic” is known as an abstraction. An abstraction is a simplification of the

original game, losing information as a trade off for time. Abstractions are commonly
used in Poker, one example would be treating a bet of 90 chips as the same as a bet of
100 chips.

The same problems with heuristics apply to abstractions. CFR applied to Poker
often relies on hand-crafted, domain-specific, and ad-hoc abstractions. Machine learning
provides a solution however, by using deep neural networks (NNs) on CFR.

3.4 Deep CFR

The idea of Deep CFR is to use a NN to approximate the results CFR would have
produced without abstractions [10]. In particular, they use MCCFR to sample states
and train one NN (called the “value” network) on the regrets produced by MCCFR.
They also train another network, called the “policy” network, which approximates the
average strategy, the thing that converges to the Nash equilibrium.

3.5 Single Deep CFR

An optimization on Deep CFR is Single Deep CFR, or a variant which only uses a single
value network, discarding the policy network [I1]. They accomplish this by storing
all iteration strategies, increasing the memory usage but reducing prediction error and
removing the need for the policy network to predict the average strategy.

3.6 Neural Fictitious Self-Play (NFSP)

A competitor to Deep CFR is NFSP, which relies on the concept of fictitious self-play
instead of regret minimization, and uses RL as deep learning [12]. Fictitious self-play is
less well documented than CFR, however.

4 Conclusion

Game theory is becoming increasingly relevant as machine learning becomes more and
more popular. Traditional game-playing algorithms like minimax, MCTS, and RL strug-
gle on imperfect information games, thus algorithms like CFR and NFSP are the next
step in game theory. Machine learning techniques can be applied to CFR in order to
remove the human-designed elements common to most game-playing algorithms.

References

NekoSpectrus. File:No-Game-No-Life-anime-logo.svg. 2014. URL: https://commons.
wikimedia.org/wiki/File:No-Game-No-Life-anime-logo.svg.

Neil Thistlethwaite. Advanced GANs. Feb. 2018. URL: https://tjmachinelearning.
com/lectures/1718/advgan/.

David Silver et al. “Mastering Chess and Shogi by Self-Play with a General Rein-
forcement Learning Algorithm”. In: CoRR abs/1712.01815 (2017). arXiv: 1712.
01815. URL: http://arxiv.org/abs/1712.01815.

OpenAl et al. “Solving Rubik’s Cube with a Robot Hand”. In: arXiv e-prints,
arXiv:1910.07113 (Oct. 2019), arXiv:1910.07113. arXiv: 1910.07113 [cs.LG].

Chelsea Finn et al. “A Connection between Generative Adversarial Networks, In-
verse Reinforcement Learning, and Energy-Based Models”. In: CoRR abs/1611.03852
(2016). arXiv: 1611.03852. URL: http://arxiv.org/abs/1611.03852.

Michael Buro. “Experiments with Multi-ProbCut and a New High-Quality Eval-
uation Function for Othello”. In: Games in AI Research. 1997, pp. 77-96. URL:
https://skatgame.net/mburo/ps/improve.pdf.

Jared Markowitz, Ryan W. Gardner, and Ashley J. Llorens. “On the Complexity
of Reconnaissance Blind Chess”. In: CoRR abs/1811.03119 (2018). arXiv: 1811.
03119. URL: http://arxiv.org/abs/1811.03119.

Todd W. Neller and Marc Lanctot. “An Introduction to Counterfactual Regret
Minimization”. In: July 2013. URL: http://modelai . gettysburg.edu/2013/
cfr/cfr.pdf.

Richard G. Gibson et al. “Efficient Monte Carlo Counterfactual Regret Minimiza-

tion in Games with Many Player Actions”. In: NIPS. 2012, pp. 1889-1897. URL:
http://papers.nips.cc/paper/4569-efficient-monte-carlo-counterfactual-
regret-minimization-in-games-with-many-player—-actions.

Noam Brown et al. “Deep Counterfactual Regret Minimization”. In: CoRR abs/1811.00164
(2018). arXiv: 1811.00164. URL: http://arxiv.org/abs/1811.00164.

Eric Steinberger. “Single Deep Counterfactual Regret Minimization”. In: CoRR
abs/1901.07621 (2019). arXiv: 1901.07621. URL: http://arxiv.org/abs/1901.
07621.

Johannes Heinrich and David Silver. “Deep Reinforcement Learning from Self-
Play in Imperfect-Information Games”. In: CoRR abs/1603.01121 (2016). arXiv:
1603.01121. URL: http://arxiv.org/abs/1603.01121.

https://commons.wikimedia.org/wiki/File:No-Game-No-Life-anime-logo.svg
https://commons.wikimedia.org/wiki/File:No-Game-No-Life-anime-logo.svg
https://tjmachinelearning.com/lectures/1718/advgan/
https://tjmachinelearning.com/lectures/1718/advgan/
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1910.07113
https://arxiv.org/abs/1611.03852
http://arxiv.org/abs/1611.03852
https://skatgame.net/mburo/ps/improve.pdf
https://arxiv.org/abs/1811.03119
https://arxiv.org/abs/1811.03119
http://arxiv.org/abs/1811.03119
http://modelai.gettysburg.edu/2013/cfr/cfr.pdf
http://modelai.gettysburg.edu/2013/cfr/cfr.pdf
http://papers.nips.cc/paper/4569-efficient-monte-carlo-counterfactual-regret-minimization-in-games-with-many-player-actions
http://papers.nips.cc/paper/4569-efficient-monte-carlo-counterfactual-regret-minimization-in-games-with-many-player-actions
https://arxiv.org/abs/1811.00164
http://arxiv.org/abs/1811.00164
https://arxiv.org/abs/1901.07621
http://arxiv.org/abs/1901.07621
http://arxiv.org/abs/1901.07621
https://arxiv.org/abs/1603.01121
http://arxiv.org/abs/1603.01121

	Introduction
	Algorithms
	Minimax
	Monte Carlo Tree Search

	Counterfactual Regret Minimization
	Definitions
	Examples
	Rock Paper Scissors (RPS)
	Pure Strategies
	A Variant of RPS

	Regret
	Deep CFR
	Single Deep CFR
	Neural Fictitious Self-Play (NFSP)

	Conclusion

