
SCT In-House Contest 1 2019-2020

Stephen Huan

December 2, 2019

1 A. Richard’s Tax Evasion

In my opinion, the original statement is sort of confusing.
Richard has 1 ≤ N ≤ 105 companies. Each company starts off with one box. Richard

can move boxes between companies 1 ≤ M ≤ 3 · 105 ways, where each way is one-
directional. Tax is for each company and on the presence of a box - a company holding
10 boxes is taxed the same amount as if it held 1. To evade tax, Richard attempts to
temporarily move boxes and then move them back (i.e. each company starts off with
one box and ends with one box). Output the lowest cost.

1.1 Example

Input

5

2 8 0 6 0

6

1 4

1 3

2 4

3 4

4 5

5 1

Output

8

Richard transfers all the boxes to companies 1 and 2. Companies are 1, 2, 3, 4, and
5. 5 → 1 directly, 4→ 5→ 1, 3→ 4→ 5→ 1. Two doesn’t change.

The amount of tax he has to pay is cost of 1 + cost of 2 = 8 + 0 = 8. After the
transfer he can move the boxes back by 1→ 4, 1→ 3, 1→ 4→ 5.

1

https://codeforces.com/group/M4wsRWBHyZ/contest/259141/problem/A

1.2 Analysis

For Richard to use some node A as a storage for B there must exist some path A→ B
and B → A. Suppose A is also a storage for C. Then, there must exist a path C → B
and B → C because they both can go through A. Therefore, it suffices to reduce the
graph into connected components where each node in a component can reach every other
node. The answer is then sum of the minimum cost node in each component.

The general concept is Strongly Connected Components. Such an algorithm runs in
O(|V |+ |E|) which in this case is sufficient.

1.3 Implementation

In Python, the standard postorder recursive algorithm will run out of memory.

sys.setrecursionlimit(10**5)

is too big for codeforces and you end up with a catch-22: decrease the limit and you
runtime error, increase it and you run out of memory. Instead, you have to write an
iterative DFS. The idea is to keep a pointer with each node that keeps track of which
child it’s on. Once it’s done with all its children, you can pop it off the stack and add it
to the postorder traversal.

def visit(u, seen=set(), l=deque([])):

if u in seen: return

stk = [(u, 0)]

seen.add(u)

while len(stk) > 0:

n, p = stk[-1]

either leaf or done with children

if len(reverse[n]) == p:

l.appendleft(n)

stk.pop()

has children left to process

else:

child = reverse[n][p]

if child not in seen:

stk.append((child, 0))

seen.add(child)

stk[-2] = (n, p + 1)

else:

stk[-1] = (n, p + 1)

return l

Given connected components, the solution is then a clean, Pythonic one-liner.

print(sum(min(map(lambda x: l[x], comps[i])) for i in range(num)))

2

https://activities.tjhsst.edu/sct/lectures/1920/2019_11_01_Strongly_Connected_Components.pdf

2 B. Mario’s Exploration

2.1 Example

Input

5 5 4

2 3

4 1

5 4

3 5

811 767 320 670 596

1 4

2 5 945

2 5 917

2 5 -851

1 1

Output

3164

811

In this case, 4 is the root. “1 4” means the sum of all the nodes in the subtree of
that room, which for the root is all the rooms. 811 + 767 + 320 + 670 + 596 = 3164.
“1 1” will query the sum of just room 1. The updates don’t effect its value, so it’s still
going to be 811.

2.2 Analysis

The basic idea is to turn the tree into an array. Each node in the tree will have a left
and right index, such that its sum will be the sum of the values in the array between
those indicies. For the root, it would have (0, N - 1) where N is the number of nodes.

A perfectly balanced binary tree with 7 nodes will have indicies of (0, 6), (0, 2), (3,
5), (0, 0), (1, 1), (3, 3), (4, 4) going from top to bottom, left to right (draw it out!)

First, run a DFS to convert the tree into a Directed Acyclic Graph (DAG). This is
just for convenience, so you can tell whether a node is a leaf or not.

Then, run another DFS to generate the actual left and right bounds. For a node
with children, its left index is going to be its leftmost child’s left bound and its right
index is going to be its rightmost child’s right bound + 1. If the node is a leaf, its left
and right will be the current length of the array.

See the iterative post-order DFS implementation from problem A. The formulation
is the same, just keep track of used and add logic on removing a node from the stack.

3

https://codeforces.com/group/M4wsRWBHyZ/contest/259141/problem/B
https://en.wikipedia.org/wiki/Directed_acyclic_graph

initialization

indexes = {}

used = -1

either leaf or done with children

if len(graph[n]) == p:

if p == 0:

used += 1

indexes[n] = (used, used)

else:

l, r = indexes[graph[n][0]][0], indexes[graph[n][-1]][1] + 1

indexes[n] = (l, r)

used = r

return indexes

Once you have the array, use your favorite O(log n) range query O(log n) range
update data structure (I found 2 Binary Indexed Trees worked best, although I may just
be bad at implementating Segment Trees). Sum queries for a room r is just the sum
of the array between the precomputed indicies, and so are the updates. This runs in
O(N logN +Q logQ) for BITs and O(N +Q logQ) for Segment Trees.

2.3 Implementation

Believe it or not, the most difficult part of this problem is reading in the input!
This cost me 20 submissions and Justin Choi a whopping 39. In C++, cin is syn-

chronized with the C input styles (scanf) which makes it considerably slower.
Add the following to your main in order to speed it up:

int main(void) {

// fast cin

std::ios::sync_with_stdio(false);

std::cin.tie(NULL);

return 0;

}

4

https://activities.tjhsst.edu/sct/lectures/1920/2019_11_01_Binary_Index_Trees.pdf
https://activities.tjhsst.edu/sct/lectures/1920/2019_11_15_Segment_Trees.pdf
https://en.cppreference.com/w/cpp/io/ios_base/sync_with_stdio
https://en.cppreference.com/w/cpp/io/ios_base/sync_with_stdio

3 C. Problem With Short Statement Part 1

3.1 Analysis

Suppose we have k 1’s in the prefix. That means the sorted prefix will look like:

0...0 1...1

n - k k

The number of swaps necessary is then just the number of 1’s in the n − k region
which is equivalent to the sum of the numbers from 0 to n − k. Both computations -
finding k and calculating the sum up to n− k can be done in O(1) with prefix sums.

Given query(i, j) computes the sum between [i, j], the number of swaps is:

query(0, i - query(0, i))

This runs in O(N).

4 D. Problem With Short Statement Part 2

4.1 Analysis

The problem is identical to the first with the added complexity of updates. To efficiently
update, the simplest solution is to use a BIT (mentioned in problem B). The only catch
is that you have to have space both to the left and to the right in order to add onto the
beginning and end. I intialize in the middle then keep track of left and right pointers.

This runs in O(N logN +Q logQ).

5

https://codeforces.com/group/M4wsRWBHyZ/contest/259141/problem/C
https://codeforces.com/group/M4wsRWBHyZ/contest/259141/problem/D

5 E. Napsack Queries

5.1 Analysis

This is a classic “order matters” DP solution. Read this lecture by the writer himself.
The second part (answering queries) can be answered in O(1) with prefix sums. The

overall solution runs in O(N +Q).

5.2 Implementation

There are only two points that need to be addreessed.

• The modulo can be negative since the prefix sum does higher minus lower. Output
the answer with an if-statement where y is the prefix sum and m is the modulo.

print(y if y >= 0 else m + y)

• Since you have to output a fluffiness between F−d and F+d, F−d can be negative
so you should use max(F −d, 0). Note that you should not use min(F +d, x) since
that just means your array isn’t big enough.

6

https://codeforces.com/group/M4wsRWBHyZ/contest/259141/problem/E
https://activities.tjhsst.edu/sct/lectures/1920/2019_10_25_Knapsack_DP.pdf

6 F. Word Problems

6.1 Analysis

This problem is ad hoc. Note the recurrence in the “dependancy”. On each iteration, the
length of the string doubles. The character of a given index depends on the characters
in the previous iteration (obviously). The characters in the first half of string entirely
follow the previous iteration (since they’re copied over). However, the characters in the
second half are shifted by one as one of the characters rotated.

012

BAT

012|120

BAT|ATB

012345|123450

BATATB|ATATBB

0123456789ab|1234567890ab

BATATBATATBB|ATATBATATBBB

Each iteration takes O(1) to process and there are O(logN) iterations, making this
algorithm run in O(logN).

6.2 Implementation

If the length of the string is S and the index N , then the number of cycles C is

S · 2C ≥ N

Solving for C yields C = dlog2
N
S e.

The recurrence is simply:

def recur(s, i, l):

if l == len(s):

return s[i]

m = l >> 1

if i < m:

return recur(s, i, l >> 1)

else:

return recur(s, (i - m + 1) % m, l >> 1)

The solution is then found with i = N − 1 and l = S · 2C .

print(recur(s, N - 1, len(s) << cycles))

7

https://codeforces.com/group/M4wsRWBHyZ/contest/259141/problem/F

7 G. ConnectN

7.1 Analysis

It suffices to reduce each number into its prime factors, as if two numbers share a factor
they also share a prime factor. For example, 6 and 72 share a factor of 6, but they also
share a factor of 2 and 3.

Once you have each prime factor and the numbers which have it as a factor, these
are your preliminary connected components. To combine connected components, apply
union-find. Each connected component can be represented as a tree and to find the
largest connected component union each number with its prime factors. This runs in
O(pN) where p is the number of primes and N is the number of numbers plus the cost
of factoring each number. Thanks to the asymptotic distribution of prime numbers,
π(n) = n

logn where π(n) is the number of prime numbers less than or equal to n. Thus,

the algorithm runs in O(n2

logn + n
√
n

logn) = O(n2

logn) if one factors with trial division. This

is sufficient for N = 2 · 104.

7.2 Implementation

Given that union joins two connected components, the solution is just

for p in ccs:

for n in ccs[p]:

union(parents, size, n, p)

Generation of a list of primes is efficient with the Sieve of Eratosthenes.

def sieve(n: int) -> list:

""" Generates a look up table of primality up to a given number - O(n log log n)"""

l = [True]*(n + 3)

for i in range(2, int(n**0.5)):

if l[i]:

j = i*i

while j < len(l):

l[j] = False

j += i

return l

8

https://codeforces.com/group/M4wsRWBHyZ/contest/259141/problem/G
https://activities.tjhsst.edu/sct/lectures/1920/2019_10_18_Union_Find_and_MST.pdf
https://en.wikipedia.org/wiki/Prime_number_theorem
https://en.wikipedia.org/wiki/Trial_division
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

	A. Richard's Tax Evasion
	Example
	Analysis
	Implementation

	B. Mario's Exploration
	Example
	Analysis
	Implementation

	C. Problem With Short Statement Part 1
	Analysis

	D. Problem With Short Statement Part 2
	Analysis

	E. Napsack Queries
	Analysis
	Implementation

	F. Word Problems
	Analysis
	Implementation

	G. ConnectN
	Analysis
	Implementation

