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1 Introduction

Clicking on entries in the table of contents will bring you to the corresponding section.
URLs are colored blue and important words are emphasized. If either of these style
choices are hard to read, consider modifying the IATEX source file (urlcolor is defined on
line 14 and the emphasis command is defined on line 33).

Code is formatted like this:

code example

print ("Hello, world!")

Python 3 is used in all code examples, although the actual code is ran with PyPy, an
alternative implementation of the Python interpreter that runs roughly 12x faster than
standard Python. PyPy works with all standard libraries, and is in general a nearly
drop-in replacement for standard Python. Considering some scripts run for nearly 10
minutes, installing PyPy is highly recommended.

Personally, I would recommended re-writing everything in C++, a low-level compiled
language that adds functionality onto C. Considering CS61A is a Python class, that
might be unrealistic, but C++ is nearly 100x faster than Python in some cases.

1.1 Definitions

Hog is a dice-based game with a variety of rules. The Hog contest is the problem of playing
the game as well as possible, where playing the game “well” means to maximize win rate.
Win rate can be thought of as the percentage of games you would win playing against an
opponent over and over again, where the number of games you play is infinite. A game
can be thought of as a series of states, where each state contains all the information
about the game’s current position. At each state, a player makes a move, which moves
the game from the current state to different state. The game terminates at a final state,
where the outcome of the game is certain (win or loss). The outcome of a game is known
as wutility, because it is what both players wants to optimize. Under this abstraction of
games, each game is essentially a decision tree that propagates downwards until the leaves
are final states, where the game is either won or lost (technically speaking, each game is
a directed acyclic graph, but the tree visual is clearer). For a concrete example, consider
the game of chess. The game starts off in the initial state of the initial chessboard, and
now the white player has a variety of moves available to them. Each move they can make
is imagined as a child of the initial chessboard in the tree. Then, the children of the
children of the initial state are the possible boards resulting from black moving. This
branching pattern repeats until we reach leaf nodes, which in chess are boards where
either one player is in checkmate or there is a draw. Chess and Hog are also zero-sum,
because any gain in utility for a player is equivalent to a loss in utility for the opponent.

1.2 Approaches

The fundamental question is, under what framework can gameplay be considered opti-
mal? In chess, one simple algorithm is minimax. Imagine a leaf node in chess. Since it
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is known whether or not a player won, lost, or tied, that node has a defined utility. Take
a node u whose children are all leaf nodes. The optimal move at u is obviously just the
move which gives the best leaf node, and u’s utility is the utility of the best leaf node.
This defines utility for nodes that are one move away from a leaf node. Repeating this
recursive definition of utility, one computes the best possible move for all chessboards by
propagating utility in this bottom-up manner (leaves to root). Since chess has an absurd
number of possible boards, in practice no computer could run fast enough to explore
all possible boards, and instead the search has to be cut off at a certain depth and the
utility of the cut-off “leaf” nodes measured with a heuristic (a function which tries to
approximate the real utility at a node). Monte-Carlo Tree Search (MCTS) essentially
replaces minimax’s heuristic with gameplay simulation at each node, and was notably
used by Google to create the strongest Go player ever created, AlphaZero.

Both algorithms could theoretically play chess, Go, tic-tac-toe, etc. optimally given
enough computational time. Chess and Hog seem similar based off our abstract definition
of a game, so one might think it would simple to apply minimax or MCTS to Hog;
however, there are two key differences: dependence on opponent play and information.

For an example of the former, consider rock-paper-scissors (RPS). The optimal strat-
egy is dependent on the opponent’s strategy: if the opponent always plays rock then
the optimal strategy is to always play paper. Chess does not have this dependency: the
assumption is that the opponent plays optimally (in accordance to the same bottom-up
algorithm). If the opponent plays sub-optimally, then the player can take advantage of
that mistake. Put simply, any deviation from the optimal strategy is a mistake.

The second key assumption is that there is an one-to-one correspondence between
game states and the information available to each player. The optimal move at any state
can be determined by just looking at the chessboard, there is no secret information. This
is different for a game like Poker. In Poker, if one knows the cards of their opponents,
they have a huge advantage. There is hidden information, so the game is partially
observable. In these sorts of games, rather than an absolute state being associated
with each node in the tree, there is an information set which represents the variety of
possible states that a player could be at.

In Hog, the feral hogs rule moves the game from a perfect information game like chess
to a partially observable game like Poker. Since a strategy does not know the change in
scores for them or their opponent, they cannot reliably predict whether the feral hogs rule
applies or not. At this point I want to make a distinction between stochasticity and un-
certainty. A stochastic game is just any game with random elements whose probability
distributions are known a priori. Hog is stochastic because rolling the dice is an inher-
ently random action. A game being stochastic does not disqualify minimax, however. A
stochastic game can be thought of as a non-stochastic game, except instead of a move’s
utility being the utility of the state that it transitions to, a move’s utility is the expected
value utility over all the possible states that performing the move could go to. An un-
certain game, on the other hand, is a game with random elements whose probability
distributions are known a posteriori. Since the probability of a certain change in score is
dependent on opponent strategy, it is impossible to determine a probability distribution
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of the changes in score (as compared to dice rolls, whose probability distributions are
known ahead of time and are independent of strategy).

This causes a fundamental problem for minimax and MCTS. The proper, mathemat-
ical concept of a solution for these types of games is the Nash equilibrium. The Nash
equilibrium is defined as a pair of strategies such that unilateral deviation from the Nash
equilibrium cannot improve play. An implication is that a strategy where the opponent
is indifferent to each action, i.e. the expected value of each of their actions is the same,
is also a Nash equilibrium. In this solution definition, a strategy is a mapping between
information sets and the probability of performing each possible action. A pure strat-
egy is one where the probability of playing a particular action is 1, and the probability
of playing all other actions is 0. A mixed strategy is a non-pure strategy. In chess,
each information set is just the chessboard, since there is no hidden information. The
strategy would define for each chessboard the probability of playing each possible action,
and in chess it is possible to play optimally with a pure strategy (where the move for a
particular board is fixed).

An algorithm for calculating the Nash equilibrium is Counterfactual Regret Mini-
mization (CFR). ! Implementation is beyond the scope of this analysis. 2 I attempted
to implement Fixed-Strategy Iteration CFR and apply it to Hog, but it took too long to
run and it was too late into the contest.

Instead, I will show the approach I actually used: a recursive dynamic programming
algorithm styled after minimax, and the final improvement: a heuristical technique to
estimate the distribution of the changes in score that determine the feral hogs rule.

1See the guide, or my explanation here.
2My Python implementation can be found here.
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2 Dynamic Programming

Dynamic programming (DP) is a programming technique that takes advantage of
repetitive structure in the solution of a problem to speed up calculation. * Dynamic
programming will be used two-fold: to compute the probability distribution of dice rolls,
and to compute the optimal move for each information set, ignoring the feral hogs rule.

One useful thing to know would be the probability distribution of dice rolls. For
example, if I roll 6 dice, what are the chances that the sum of rolls is 10?7 Will rolling 7
dice improve my probability of getting a 107 We call the sum of rolls deltas, since they
represent the change in score for the turn. The distribution we will actually calculate
is the probability mass function (PMF), or the discrete equivalent of the probability
distribution function (PDF). This will tell us for a particular number of dice rolled, the
exact probability for each delta. The first thing we will do is ignore the chance of rolling
1, since pig out means that if any dice rolls a 1, then the entire score is 1. To take this
into account, we will separate the rolls into two possibilities: pig out happens, and pig
out doesn’t happen. If pig out doesn’t happen, then none of the dice rolled a 1 so we
can ignore rolling a 1 entirely in our distribution calculation.

Take the base case of rolling 1 dice. Either we roll a 2, 3, 4, 5, or 6 (ignoring 1 because
of the pig out rule logic above). For one dice, all these possibilities have equal likelihood,
as each one has 1 possible way of occurring. Suppose we roll 2 dice. The lowest possible
number we can roll is 4 (2 + 2), and the largest is 12 (6 + 6). There is only one way the
delta can be 4, since we must have rolled a 2 and then another 2. However, there are
multiple ways to get to 7, for example, as 7 =3 +4 =2 + 5 =1 + 6 etc. Thus, 7 is more
likely than 4, and the exact amount 7 is more likely depends on how many ways there
are to get to it. The number of ways to get to 7 is the number of ways to get to 5 with
one dice (then we can roll a 2), plus the number of ways to get to 4, plus the number of
ways to get to 3, etc. In general, the number of ways to get to a particular delta d with
k rolls is the number of ways to get to d — 2 with k£ — 1 rolls plus the number of ways to
get to d — 3, and so on until d — 6. Since calculating the distribution for k rolls requires
first calculating the distribution for k& — 1 rolls, we have a sort of inductive algorithm
where we can first compute the distribution for 1, use it to compute the distribution of
2, and so on until we compute the distribution for 10 dice. Let us put our reasoning into
code. First, we define a few useful constants. GOAL SCORE is the score we want to
get to to win, K is the largest number of dice we can roll, we start at 2 since we ignore
the possibility of rolling 1, and each dice has 6 sides. We define INF as infinity.

defining constants

GOAL_SCORE = 100
K, START, SIDES = 10, 2, 6
INF = float("inf")

First, we allocate an array of size 61, initialized to all 0’s. We add 5 1’s, to count the
possibilities for 1 dice (1 way to get to 2, 1 way to get to 3, etc).

3See chapter 15 of Introduction to Algorithms, the classic MIT book by Cormen, Leiserson, Rivest,
and Stein (also named CLRS after the authors’ initials) for a more thorough treatment.



DP base case (rolling 1 dice)
dp = [0]*(6%K + 1)
for i in range(START, SIDES + 1):

dplil += 1

We then define pmf matrix, which will hold each dp array. pmf matrix will have
an eventual length of 10, and is a 10x61 matrix for the 10 possible number of dice rolled
and 60 being the largest delta (10 dice rolling 6).

pmf_matrix
pmf_matrix = [dp]

Finally, we actually compute each distribution. Allocate a temporary array temp.
For each possible delta j in the distribution of the k — 1th distribution, that implies
Jj+2, 5+ 3, etc. are also possible dplj] times. temp is now the kth distribution, so we
update dp to be temp and add a copy of dp to the pmf matrix to avoid mutability.

update
for i in range(K - 1):

temp = [0]*(6*%K + 1)

for j in range(len(dp) - 6):

for v in range(START, SIDES + 1):
temp[j + v] += dpl[j]
dp = temp
pmf _matrix.append(list(dp))

This yields a distribution that looks like this:

Probability mass function of rolling k dice
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Figure 1: PMF of every possible dice roll.



2.1 Strategy Ignoring Feral Hogs

Armed with our PMF, we can formulate a strategy ignoring feral hogs. First, we define
a few helper methods from Hog (the types in the function arguments and the -> are
Python type annotations, which are essentially comments that show type).

Hog functions
def free_bacon(score: int) -> int:
return 10 - (score % 10) + score//10

def is_swap(player_score: int, opponent_score: int) -> bool:
tens_digit = (opponent_score 7 100)//10
return abs((player_score 7 10) - (opponent_score 7, 10)) == tens_digit

def is_feral(delta: int, k: int) -> bool:
return abs(delta - k) ==

We now define a major building block of the eventual algorithm: a function that
calculates the expected value win rate after rolling k£ dice. The expected value is the
sum of the value of each possibility times the probability that it occurs. Under the
recursive leap of faith, we assume we have a function recur that is able to compute the
win rate given a particular delta. The particular pmf we use is pmf matrix[k - 1| because
pmf matrix|[0] is the distribution for 1 dice rolled, pmf matrix|[1] is for 2 dice rolled, and
so on. denom is 5, because each dice has 5 options so the total number of possibilities
is 5. g;?lfo[ﬂ is then the actual probability of a delta d occurring. We then track two
possibilities: either pig out happens or it doesn’t.

The chance pig out doesn’t happen is if we don’t roll a 1 for all £ dice. The chance
of rolling a 1 is %, so the chance of not rolling a 1 is % Thus, the chance of not rolling a
single 1 is ( %)k The chance of rolling at least 1 is then 1 minus the chance of not rolling
a single 1, so 1 — (%)k If pig out does happen, the win rate of pig out is the win rate
after a delta of 1 (since we know our score changes by 1). We find this win rate by calling
recur on 1.

If pig out doesn’t happen, we have to find what happens after multiple possible delta
values. If we roll k£ dice, the smallest delta we can get is 2k since the smallest roll is 2
and the largest delta we can get is 6k since the smallest roll is 6. For each delta, we add
up the probability of that delta occurring, multiply by the win rate calculated by recur,
and finally multiply by the chance that we don’t pig out.

Ignore the *args in the code, they are for later use. The backslashes in Python are
line extensions, to write a particularly long line onto multiple lines.

expected value
def expected_value(recur, k, *args) -> float:
pmf, denom = pmf_matrix[k - 1], 5**k
return (1 - (5/6)**k)*recur(l, *args) + \
((5/6) #*k) *sum(recur(d, *args)x*(pmf[d]/denom) \
for d in range(2xk, 6%k + 1))
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We now need to define the recur function, which takes in a delta and returns the
win rate of the resulting position. Since our strategy ignores feral hogs, a position is
defined by the tuple (score, opponent score). No other information is necessary. First,
we compute how the state changes after a particular delta. Note that the scores are
swapped if there is no swap, and not swapped if there is a swap. This is because the
perspectives reverse after a move (it is now the opponent’s turn to move), so we swap to
maintain symmetry.

state
def state(score: int, opponent_score: int, delta: int) -> tuple:
new, opp = score + delta, opponent_score
return (opp, new) if not is_swap(new, opp) else (new, opp)

We now suppose that our strategy is a function passed in as f. We assume f returns
a tuple of (best move, expected win rate). Recur uses f to get the win rate of the new
state, where * is the tuple unpack (it turns a tuple into a list of arguments) and gets [1],
which is the expected win rate. We return 1 minus that value, because the next move is
from the perspective of the opponent, so we get the win rate for the current player.

recur
def recur2(f, score, opponent_score, delta):
return 1 - f(*state(score, opponent_score, delta))[1]

Given a complete definition for expected value, we now create a strategy list which
encapsulates the win rate for each possible action. We either roll 1-10 dice, whose win
rate is given by expected value, or we roll 0, whose corresponding delta is computed
from the free bacon rule. In the case of free bacon, there is no probability, so we can call
recur to directly get the next win rate.

strategy
def strategy2(recur, opponent_score) -> list:

return [(0, recur(free_bacon(opponent_score)))] + \
[(k, expected_value(recur, k)) for k in range(l, K + 1)]

Finally, to get the best move, we take the move with the highest win rate. We also
break ties by arbitrarily picking the lower roll (since these rolls have lower variance).

best move
def best_move(strategy: list) -> tuple:
return max(strategy, key=lambda x: (x[1], -x[0]))

Given these methods, we construct the encapsulating strategy. The first thing we
notice is that since a position is given by (score, opponent score), there are only 100*100
= 10,000 possible positions. If we calculate the win rate for each position, then when
asked for the same position twice we can just remember what we calculated and return the
same value. This technique is known as memoization and can be easily implemented
with the Iru_ cache decorator from the standard library functools.



The base case is if the game is over, when either my score or the opponent score is
over the GOAL SCORE cutoff. In that case, we return whether the current player won
or not. If the game is not over, then we create a new recur function that wraps the recur2
function defined earlier to only take in a argument delta. We pass recur2 the function we
are in, which is the recursive aspect of this algorithm. Finally, we return the best move
by computing the strategy list.

strategy dp
@lru_cache (maxsize=None)
def ignore_feral_dp(score, opponent_score):
# base case: 1f the game ts over, return whether I win or not
if score >= GOAL_SCORE or opponent_score >= GOAL_SCORE:
return (None, score >= GOAL_SCORE)

recur = lambda delta: recur2(ignore_feral_dp, score, opponent_score, delta)
return best_move(strategy2(recur, opponent_score))

As written, this is not a valid strategy since it returns the tuple (best move, expected
win rate) for each position. We write a simple wrapper function which returns the first
element in the tuple.

wrapper
def ignore_feral_strategy(score, opponent_score):

return ignore_feral_dp(score, opponent_score) [0]

I submitted this strategy early on, and found I was in a 3-way tie for first. That
seemed ridiculous to me, because I had finished the hog project nearly weeks in advance
and had been writing my master strategy for a significant amount ahead of time. I
realized I had drastically underestimated UC Berkeley students, and had to begin work
on a new strategy.

Figure 2: Leaderboard after this strategy (vazae was my previous team name).

The top 10 of the current leaderboard likely use a variant of this strategy.
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2.2 Caching Strategies

Although this initial strategy is fast to run, the latter strategies start taking longer and
longer, and it is convenient if one could save the results of a strategy to a file. Since each
strategy function is a pure function of (score, opponent score), it suffices to create an
100x100 array and store such an array to a text file.

Python defines the pickle standard library, which can be used to dump arbitrary
Python objects to a file and load them later. We define two methods, load, which takes
a filename and returns the object, and dump, which takes a filename and an object and
writes the object to the file.

pickle methods
def load(fname):
with open(fname, "rb") as f:
return pickle.load(f)

def dump(fname, obj):
with open(fname, "wb") as f:
pickle.dump(obj, f)

We are now able to dump the strategy matrix to a file for later use.

dump strategy to file
mat = [[final_strategy(i, j) for j in range(100)] for i in range(100)]
dump ("mat.pickle", mat)

Finally, we define the final strategy.py file which simply loads an existing strategy
from a file. hoglib is a Python file with our miscellaneous utility functions, and the
final strategy function simply returns the corresponding element in the matrix.

final_strategy.py

mwmn

This file contains your final_strategy that will be submitted to the contest.
It will only be Tun on your local machine, so you can import whatever you want!

Remember to supply a unique PLAYER_NAME or your submission will not succeed.
nmunn

PLAYER_NAME = 'Mikoto Misaka and the Tree Diagram' # Change this line!
from hoglib import load
mat = load("mat.pickle")

def final_strategy(score, opponent_score):
return mat[score] [opponent_score]

If your Ok account gets hacked, the adversary will not find your actual strategy so
this doubles as a failsafe. Also, it hides your power level.

10
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3 Reverse Engineering compare strategies.py

During testing of this strategy, I kept getting 500 internal errors and request limit ex-
ceeded. This annoyed me, and I decided to implement it myself as suggested.

Under our current framework, the sole change is to recur2. Instead of just tracking
(score, opponent score), we need to track that along with the current turn, the change
in score for the current player (last delta) and the change in score for the opponent
(prev_delta). After a particular move, the turn just swaps from True to False, and False
to True, and one elegant way to represent that is xor with True (True xor True is False,
and False xor True is True). Previous delta becomes the last delta, and the new delta
becomes the new previous delta. However, there are 60 possible deltas, and 60*60 =
3600 so this would make our code 3600x slower. One optimization is that we don’t care
if the delta is greater than 12, because we only track these deltas to determine whether
feral hogs applies, and one can’t roll more than 10 dice so the maximum delta is 12 (so
that the delta is within two of the number of dice rolled). This reduces the number of
possible deltas to 13, making the code 169x slower instead. We add 3 to delta if the
feral hogs rule applies, but only to determine the next state as the change in the score is
calculated without the feral hogs bonus taken into account.

recurb
def recurb5(f, score, opponent_score, turn, last_delta, prev_delta, delta, roll):
return 1 - f(*state(score, opponent_score, delta + 3*is_feral(last_delta, roll)),
turn - 1, prev_delta, delta if delta <= 12 else INF)

We now write the function for the comparison of two strategies, which we assume
are defined as F1 and F2 in the global scope. We also define the parameter give all,
which determines whether all information is given to the strategies, or just the (score,
opponent score) tuple. To simulate the compare _strategies file, this parameter defaults
to False. This function has a very similar structure to that of the strategy. We define the
base case of the game being over, and if the game is not over define a wrapper over the
recurd function that takes in a delta and the roll which generated that delta. We then
get the roll from either F1 or F2, determining which one to use based off the current
turn. Finally, we return the win rate resulting from that action.

recursive comparison algorithm
@lru_cache (maxsize=None)
def server(score, opponent_score, turn, last_delta, prev_delta, give_all=False):
if score >= GOAL_SCORE or opponent_score >= GOAL_SCORE:
return score >= GOAL_SCORE

state = (score, opponent_score, turn, last_delta, prev_delta)
recur = lambda delta, roll: recurb(server, *state, delta, roll, give_all)

f = F1 if not turn else F2
k = f(score, opponent_score) if not give_all else \
f(score, opponent_score, turn, last_delta, prev_delta)
return recur(free_bacon(opponent_score), 0) if k == 0 else \
expected_value(recur, k, k)

11



In order to use this comparison function, we define a wrapper compare. compare
takes in a function f which does the actual comparison, and two strategies s1 and s2. It
defines F1 and F2, and determines the win rate starting from (0, 0) with sl going first.
If the parameter both is True, we then average the win rate with sl going first with the
win rate with s2 going first. We swap the strategies to have s2 go first, and we negate
the value to account for the change in perspective. Before computing the new win rate,
we need to first clear the cache since we are recomputing something different. Finally,
we return the average of the two win rates.

wrapper
def compare(f, s1, s2, both=True):
global F1, F2
F1, F2 = s1, s2
vl = £(0, 0, False, 0, 0)
if both:
f.cache_clear()
F1, F2 = F2, F1
v2 =1 - £(0, 0, False, 0, 0)
else:
v2 = vl
return (vl + v2)/2

This is a near-exact replica of the compare strategies.py file.

@MacBook-Pro ~/P/b/c/p/hog_contest> pypy3 co
B.7995563013879631

@MacBook-Pro ~/P/b/c/p/hog_contest> pypy3d compare strategles.py
Win rate: @.7005563013879634

@MacBook-Pro ~/P/b/c/p/hog_contest>

Figure 3: Matching the server comparison.

3.1 Constructing a Delta Distribution

Once I had this reverse engineered comparison file, I figured that this could be used to
my advantage. First, we create a perfect player, which given perfect information of the
game computes optimal play. We can test this perfect player if we set give all to True.

First, instead of caching with Iru_cache as done before, we cache with an explicit
dictionary. In order to track the possible (last delta, prev delta) associated with each
(score, opponent score, turn), we separate the two tuples.

DP dictionary
dp_matrix = {(i, j, b): {} for i in range(GOAL_SCORE) \
for j in range(GOAL_SCORE) for b in range(2)}

We also modify strategy?2 to be strategyb, whose only difference is that it also passes
in the roll that lead to the delta.

Finally, we define the optimal player and its wrapper function.

12



perfect DP

def perfect_dp(score, opponent_score, turn, last_delta, prev_delta):
if score >= GOAL_SCORE or opponent_score >= GOAL_SCORE:
return (None, score >= GOAL_SCORE)

prefix = dp_matrix[(score, opponent_score, turn)]
key = (last_delta, prev_delta)
if key in prefix:

return prefix[key]

state = (score, opponent_score, turn, last_delta, prev_delta)
recur = lambda delta, roll: recurb(perfect_dp, *state, delta, roll)
prefix[key] = best_move(strategy5(recur, opponent_score))

return prefix([key]

def perfect_strategy(*args):
return perfect_dp(*args) [0]

Once we have this perfect player, we modify compare to keep track of the frequencies
of each position, using a similar explicit dictionary.

record frequencies
def deltas(score, opponent_score, turn, last_delta, prev_delta, give_all=True):
if score >= GOAL_SCORE or opponent_score >= GOAL_SCORE:
return score >= GOAL_SCORE

prefix = count[(score, opponent_score, turn)]
prefix[(last_delta, prev_delta)] = prefix.get((last_delta, prev_delta), 0) + 1
key = (score, opponent_score, turn, last_delta, prev_delta)
if key in dp_matrix:
return dp_matrix[key]

recur = lambda delta, roll: recur5(deltas, *key, delta, roll, give_all)

f = F1 if not turn else F2
k = f(score, opponent_score) if not give_all else \
f(score, opponent_score, turn, last_delta, prev_delta)
dp_matrix[key] = recur(free_bacon(opponent_score), 0) if k == 0 else \
expected_value(recur, k, k)
return dp_matrix[key]

This is the key insight: an approximation for the (last delta, prev delta) distribution
is given by the frequency counts generated by two optimal perfect-information strategies
playing against each other. Once we have this distribution, we make a new strategy
accounting for it.

13



4 The Final Strategy

Since we restructure the algorithm, we re-define recur and expected value. The defini-
tions are similar, except we introduce a new parameter feral bonus.

re-defines

@lru_cache (maxsize=None)
def final_strategy_dp(score, opponent_score, turn=False):
if score >= GOAL_SCORE or opponent_score >= GOAL_SCORE:
return (None, score >= GOAL_SCORE)

def recur(delta, feral_bonus):
return 1 - final_strategy_dp(*state(delta + feral_bonus), turn ~ 1) [1]

def expected_value(k, feral_bonus):
pmnf, denom = pmf_matrix[k - 1], 5*xk
return (1 - (5/6)#**k)*recur(l, feral_bonus) + \
((5/6)**k) *sum(recur(d, feral_bonus)x*pmf[d] \
for d in range(2*k, 6%k + 1))/denom

We weight deltas, constructing a probability distribution where deltas that occur
more frequently are assumed to be more probable. prob is the counts from two perfect
players playing against each other, and prob backup is the counts from self play. Since
what moves each strategy makes determines which positions are seen, it is possible for a
dictionary not to contain a particular delta. First, prob is checked, then prob backup,
and if it is in neither a default value of 0.25 is used.

weight
def weight(deltas, turn):
return prob[(score, opponent_score, turn)].get(deltas,
prob_backup[(score, opponent_score, turn)].get(deltas, 0.25))

We then construct the delta distribution, which maps a roll to the probability of it
being feral. We get the possible deltas through the dp matrix that results from the
computation of the perfect strategy, and the denominator is the sum of the weights of
each possible delta. Finally, we iterate through each possible delta, and update the
probability of a certain roll being feral. Since feral hogs applies when the roll is 2 away
from the last delta, we add a delta’s weight to the roll of delta + 2 and delta - 2.

delta distribution

def delta_dist(turn):
prefix = dp_matrix[(score, opponent_score, turn)]
# track the probability of feral hogs occuring for each dice roll.
denom = sum(weight(deltas, turn) for deltas in prefix)
count = {}
for last_delta, prev_delta in prefix:
w = weight((last_delta, prev_delta), turn)
count [last_delta - 2] = count.get(last_delta - 2, 0) + w
count [last_delta + 2] count.get(last_delta + 2, 0) + w
return count, denom
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The turn is actually also a missing piece of information, where the turn is defined as
whether you were the player who went first. We explicitly maintain a distinction between
going first and going second by creating two delta distributions, and averaging the two.
p is then the probability that a dice roll k is feral. feral value is then an extension of
expected value, where feral value computes the win rate taking into account p.

feral_value

def feral_value(f, k, v):
p = 0.5%count0.get(k, 0)/denom0 + 0.5*countl.get(k, 0)/denoml
return px(£(v, 3) if p > 0 else 0) + (1 - p)*(£f(v, 0) if p < 1 else 0)

Given these functions, we compute the two delta distributions associated with going
first and going second. If the denominator of a distribution is 0, that implies the position
is impossible. If both are 0, the position is impossible so it doesn’t matter what we return.
If one is impossible and the other is possible, the possible one is the only possibility so
we copy the possible distribution into the impossible one. Finally, if both are possible,
we maintain both possibilities by doing nothing.

multiple distributions
countO, denomO, countl, denoml = *delta_dist(False), *delta_dist(True)
# position 1s impossible, default to standard dp just in case
if denom0 == 0 and denoml ==
return final_strategy_dpl(score, opponent_score)
# one 1s tmpossible, another isn't - copy possible into impossible
if max(denomO, denoml) '= 0 and min(denomO, denoml) ==
if denomO != O:
countl, denoml = countO, denomO
else:
countO, denomO = countl, denoml

We define a strategy list and the best move.

strategy list
strategy = [(0, feral_value(recur, 0, free_bacon(opponent_score)))] + \
[(k, feral_value(expected_value, k, k)) for k in range(l, K + 1)]

best_roll, best_ev = best_move(strategy)

15



4.1 ¢ Error Modeling

We now take into account opponent errors, under a framework called the perturbed
Nash equilibrium. The idea is the following. Suppose there is a game with this payoff
matrix, where the rows are player 1’s actions and the columns are player 2’s, and each
tuple represents (player 1 utility, player 2 utility).

A B
Cl-1,1]-1,1
D|[2 21,1

Table 1: Payoff table

Essentially, action A and B are the same except if player 1 plays D, in which case
A gets more utility for player 2 than B. A rational player 1 would always play C, since
it avoids the risk of losing 2 when playing D. Thus, from player 2’s perspective, action
A and action B are the same since player 2 assumes that player 1 will never play D. In
the real world, however, people make mistakes. Thus, player 2 should play A since it
can only improve utility, and in the worst case does the same as action B. In order to
model mistakes, we assume the opponent has some fixed probability ¢ to make a random
action. Thus, if it is the opponent’s turn, instead of returning the best expected value
directly, we return e times the average expected value of the position plus 1 — ¢ times
the best expected value. I have ¢ = 0.01, so a 1% chance to make a mistake.

epsilon error modeling

# assume opponent randomly makes mistakes

return (best_roll, (1 - EPSILON)*best_ev + \
EPSILON*sum(x[1] for x in strategy)/len(strategy)) \
if turn else (best_roll, best_ev)

Lastly, we define the standard wrapper.

wrapper
def final_strategy(score, opponent_score):
return final_strategy_dp(score, opponent_score) [0]
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5 Conclusion

The assumption that the delta distribution is approximately the calls generated by the
compare function is a very primitive one, as shown by the very adhoc decisions working
around it. For example, 20 minutes before the deadline of the competition, I was desper-
ately adjusting every number in the codebase to try to get a slight advantage over the
27d place at the time. If I had not set the final backup value to 0.25, I would have lost.

0.5808732 vs Mikoto Misaka and the Tree Diagram

Figure 4: The current 3" place win rate against me, minutes before the deadline.

5.1 Future Work

A more sophisticated approach would take into account the probability that each delta
occurs. For example, a delta of 60 is extremely unlikely compared to a delta of 30. So
instead of using frequency counts, the probability would be used directly.

And in general, all of these attempts to estimate a distribution for the deltas are
rooted in failure, since they are intrinsically dependent on opponent play. To reiterate,
the only truly optimal solution is if one computed the Nash equilibrium with an algorithm
like CFR. Even if one used CFR, CFR generates a probability for each action, not a best
action. Since the Hog contest caches the function into a matrix, a strategy is required to
be a pure function. I was assuming that the best approach would be to take the highest
probability action for each state, but it might be better to sample a random strategy by
picking an action according to these probabilities (e.g. if there is a 75% chance for A and
a 25% chance for B, instead of always picking A generate a random number and see if it
is < 0.75, and if it is, pick A and otherwise pick B).

Machine learning is of course another option, although it would be much harder to
experiment with and to prove optimality. Dynamic programming is much more accessible,
shown by the nearly 11% of people who used it in this year’s contest.
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6 Appendix

6.1 Code

hoglib.py

import pickle, random
### Hog game

# score needed to win
GOAL_SCORE = 100
# maz number of dice the player can roll, ignore rolling 1, sides of the dice
K, START, SIDES = 10, 2, 6
INF = float("inf")
# Dynamic programming approach to compute the probability mass function.
dp = [01=(6%K + 1)
for i in range(START, SIDES + 1):
dp[i] += 1

pmf_matrix = [dp]
for i in range(K - 1):
temp = [0]*(6+K + 1)
for j in range(len(dp) - 6):
for v in range(START, SIDES + 1):
temp[j + vl += dpl[j]
dp = temp
pmf_matrix.append(list(dp))

def free_bacon(score: int) -> int:
return 10 - (score % 10) + score//10

de:

=8

is_swap(player_score: int, opponent_score: int) -> bool:
tens_digit = (opponent_score % 100)//10
return abs((player_score 7 10) - (opponent_score 7 10)) == tens_digit

def is_feral(delta: int, k: int) -> bool:
return abs(delta - k) ==

### Recursive
def state(score: int, opponent_score: int, delta: int) -> tuple:
new, opp = score + delta, opponent_score

return (opp, new) if not is_swap(new, opp) else (new, opp)

def recur2(f, score, opponent_score, delta):
return 1 - f(+state(score, opponent_score, delta))[1]

def recur5(f, score, opponent_score, turn, last_delta, prev_delta, delta, roll):

return 1 - f(*state(score, opponent_score, delta + 3*is_feral(last_delta, roll)),

turn - 1, prev_delta, delta if delta <= 12 else INF)[1]

def expected_value(recur, k, *args) -> float:

pmf, denom = pmf_matrix[k - 11, 5**k

return (1 - (5/6)**k)*recur(l, *args) + \

((5/6) **k) *sum(recur(d, *args)*pmf[d] for d in range(2*k, 6%k + 1))/denom

def strategy2(recur, opponent_score) -> list:

return [(0, recur(free_bacon(opponent_score)))] + \

[(k, expected_value(recur, k)) for k in range(l, K + 1)]

def strategyb5(recur, opponent_score) -> list:

return [(0, recur(free_bacon(opponent_score), 0))] + \
[(k, expected_value(recur, k, k)) for k in range(l, K + 1)]

def best_move(strategy: list) -> tuple:
return max(strategy, key=lambda x: (x[1], -x[0]))

### Pickle methods
def load(fname):
with open(fname, "rb") as f:
return pickle.load(f)
def dump(fname, obj):

with open(fname, "wb") as f:
pickle.dump(obj, f)
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compare.py

1 from functools import lru_cache
2 from hoglib import *
3
4 def recur5(f, score, opponent_score, turn, last_delta, prev_delta, delta, roll, give_all):
5 return 1 - f(*state(score, opponent_score, delta + 3*is_feral(last_delta, roll)),
6 turn -~ 1, prev_delta, delta if delta <= 12 else INF, give_all)
7
8 def compare(f, s1, s2, both=True):
9 global F1, F2
10 F1, F2 = s1, s2
11 vl = £(0, 0, False, 0, 0)
12 if both:
13 f.cache_clear()
14 F1, F2 = F2, F1
15 v2 =1 - £(0, 0, False, 0, 0)
16 else:
17 v2 = vl
18 return (vl + v2)/2
19
20 @lru_cache (maxsize=None)
21 def server(score, opponent_score, turn, last_delta, prev_delta, give_all:False):
22 if score >= GOAL_SCORE or opponent_score >= GOAL_SCORE:
23 return score >= GOAL_SCORE
24
25 state = (score, opponent_score, turn, last_delta, prev_delta)
26 recur = lambda delta, roll: recurb(server, *state, delta, roll, give_all)
27
28 f = F1 if not turn else F2
29 k = f(score, opponent_score) if not give_all else \
30 f(score, opponent_score, turn, last_delta, prev_delta)
31 return recur (free_bacon(opponent_score), 0) if k == 0 else \
32 expected_value(recur, k, k)
33
34 all_info = lambda *args: server(*args, True)
35 all_info.cache_clear = lambda: server.cache_clear()
36
37 count = {(i, j, b): {} for i in range(GOAL_SCORE) for j in range(GOAL_SCORE) for b in range(2)}
38 dp_matrix = {}
39
40 def deltas(score, opponent_score, turn, last_delta, prev_delta, give_all:True):
41 if score >= GOAL_SCORE or opponent_score >= GOAL_SCORE:
42 return score >= GOAL_SCORE
43
44 prefix = count[(score, opponent_score, turn)]
45 prefix[(last_delta, prev_delta)] = prefix.get((last_delta, prev_delta), 0) + 1
46 key = (score, opponent_score, turn, last_delta, prev_delta)
47 if key in dp_matrix:
48 return dp_matrix[key]
49
50 recur = lambda delta, roll: recur5(deltas, *key, delta, roll, give_all)
51
52 f = F1 if not turn else F2
53 k = f(score, opponent_score) if not give_all else \
54 f(score, opponent_score, turn, last_delta, prev_delta)
55 dp_matrix[key] = recur(free_bacon(opponent_score), 0) if k == 0 else \
56 expected_value(recur, k, k)
57 return dp_matrix[key]
58
59 def dict_cache_clear():
60 global dp_matrix
61 dp_matrix = {}
62
63 deltas.cache_clear = dict_cache_clear
64
65 if __name__ == "__main__":
66 from final_strategy import final_strategy
67 from baseline_strategy import baseline_strategy
68 from final import ignore_feral_strategy, perfect_strategy, final_strategy2
69
70 ### final v baseline
71 # print(compare(server, ignore_feral_strategy, baseline_strategy))
72
73 ### final v perfect player
74 # print(compare(all_info, perfect_strategy, lambda z, y, *args: final_strategy(z, y), False))
75
76 ### attempts to extract a delta distribution
7 # print(compare(deltas, perfect_strategy, perfect_strategy))
78 # print (compare(deltas, final_strategy2, final_strategy2))
79
80 # dump ("count.pickle”, count)
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final.py

from functools import lru_cache
from hoglib import *

=W N =

dp_matrix = {(i, j, b): {} for i in range(GOAL_SCORE) for j in range(GOAL_SCORE) for b in
— range(2)}

# dp_matriz = load("dp_matriz.pickle")

prob = load("perfect_play_count.pickle")

prob_backup = load("self_play_count.pickle")

© 0w N o u

# chance of opponent making a mistake
10 EPSILON = 0.01

12 @lru_cache(maxsize=None)
13 def ignore_feral_dp(score, opponent_score):

14 # base case: if the game 1is over, return whether I win or not

15 if score >= GOAL_SCORE or opponent_score >= GOAL_SCORE:

16 return (None, score >= GOAL_SCORE)

17

18 recur = lambda delta: recur2(ignore_feral_dp, score, opponent_score, delta)
19 return best_move(strategy2(recur, opponent_score))

20

21 def ignore_feral_strategy(score, opponent_score):

22 return ignore_feral_dp(score, opponent_score) [0]

23

24 def perfect_dp(score, opponent_score, turn, last_delta, prev_delta):
25 if score >= GOAL_SCORE or opponent_score >= GOAL_SCORE:

26 return (None, score >= GOAL_SCORE)

27

28 prefix = dp_matrix[(score, opponent_score, turn)]

29 key = (last_delta, prev_delta)

30 if key in prefix:

31 return prefix[keyl

32

33 state = (score, opponent_score, turn, last_delta, prev_delta)

34 recur = lambda delta, roll: recur5(perfect_dp, *state, delta, roll)
35 prefix[key] = best_move(strategy5(recur, opponent_score))

36 return prefix[key]

37

38 def perfect_strategy(*args):

39 return perfect_dp(*args) [0]

40

41  @lru_cache(maxsize=None)
42 def final_strategy_dp(score, opponent_score, turn=False):

43 if score >= GOAL_SCORE or opponent_score >= GOAL_SCORE:

44 return (None, score >= GOAL_SCORE)

45

46 def recur(delta, feral_bonus):

47 return 1 - final_strategy_dp(*state(delta + feral_bonus), turn ~ 1)[1]
48

49 def expected_value(k, feral_bonus):

50 pmf, denom = pmf_matrix[k - 1], 5*xk

51 return (1 - (5/6)**k)*recur(l, feral_bonus) + \

52 ((5/6) **k) *sum(recur(d, feral_bonus)+*pmf[d] for d in range(2*k, 6%k + 1))/denom
53

54 def feral_value(f, k, v):

55 p = 0.5%xcount0.get(k, 0)/denom0 + 0.5*countl.get(k, 0)/denoml

56 return px(£(v, 3) if p > 0 else 0) + (1 - p)*(f(v, 0) if p < 1 else 0)
57

58 def weight(deltas, turn):

59 return prob[(score, opponent_score, turn)].get(deltas,

60 prob_backup[(score, opponent_score, turn)].get(deltas, 0.25))
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61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

def

def

if

def delta_dist(turn):
prefix = dp_matrix[(score, opponent_score, turn)]
# track the probability of feral hogs occuring for each dice roll.
denom = sum(weight(deltas, turn) for deltas in prefix)
count = {}
for last_delta, prev_delta in prefix:
w = weight((last_delta, prev_delta), turn)
count [last_delta - 2] = count.get(last_delta - 2, 0) + w
count [last_delta + 2] = count.get(last_delta + 2, 0) + w
return count, denom

countO, denomO, countl, denoml = *delta_dist(False), *delta_dist(True)
# position is impossible, default to standard dp just in case
if denom0 == 0 and denoml ==
return final_strategy_dpl(score, opponent_score)
# one is impossible, another isn't - copy possible into impossible
if max(denomO, denoml) != 0 and min(denomO, denoml) ==
if denomO !'= O:
countl, denoml = countO, denomO
else:
countO, denomO = countl, denoml

strategy = [(0, feral_value(recur, 0, free_bacon(opponent_score)))] + \
[(k, feral_value(expected_value, k, k)) for k in range(l, K + 1)]

best_roll, best_ev = best_move(strategy)
# assume opponent randomly makes mistakes
return (best_roll, (1 - EPSILON)*best_ev + EPSILON*sum(x[1] for x in strategy)/len(strategy))
= \
if turn else (best_roll, best_ev)

final_strategy(score, opponent_score):
return final_strategy_dp(score, opponent_score) [0]

final_strategy2(score, opponent_score, turn, last_delta, prev_delta):
return final_strategy(score, opponent_score)

_name__ == "__main__":

# perfect_strategy(0, 0, False, 0, 0)
# dump ("dp_matriz.pickle"”, dp_matriz)
# exit()

msg = input("Are you sure you want to overwrite the pickle file? ").lower()
if len(msg) > 0 and msg[0] == "y":
mat = [[final_strategy(i, j) for j in range(100)] for i in range(100)]
dump ("mat.pickle", mat)
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final _strategy.py

mmnn

This file contains your final_strategy that will be submitted to the contest.
It will only be run on your local machine, so you can import whatever you want!
Remember to supply a unique PLAYER_NAME or your submission will not succeed.

wmn

PLAYER_NAME = 'Mikoto Misaka and the Tree Diagram' # Change this line!

from hoglib import load
mat = load("mat.pickle")

def final_strategy(score, opponent_score):
return mat[score] [opponent_score]

6.2 Team Name

Mikoto Misaka is a character from the anime A Certain Scientific Railgun. She has the
power to manipulate electricity and electromagnetic fields in all sorts of ways (giving her
the moniker “railgun”; as she is able to accelerate coins like an actual railgun). Apparently,
she is able to manipulate computers as well, so that’s why she’s here.

The Tree Diagram is a supercomputer in this world, and I thought the name was
particularly apropos because I was imagining tree diagrams throughout coding up this
strategy (admittedly, “Tree Diagram” is a really bad name for a supercomputer).

N

(a) Mikoto Misaka (b) Tree Diagram

Figure 5: The team.
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