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Meant to be Watched with the “Abridged” Lecture!

[ https://github.com/stephen-huan/sct-lectures/blob/master/abridged rma/lecture.pdf

[ Alternatively. .. https://qithub.com/stephen-huan/sct-lectures/blob/master/rma/lecture.pdf



https://github.com/stephen-huan/sct-lectures/blob/master/abridged_rmq/lecture.pdf
https://github.com/stephen-huan/sct-lectures/blob/master/rmq/lecture.pdf

Definition of Range Minimum Query (RMQ)

e Given an array A with length n and two indexes i, j | i <, find the smallest
element between i and j (inclusive on both ends).
e <f, g> runtime notation



Algorithms Not Discussed

e Fenwick Trees (BITS)
e Segment Trees



Extended Example

e A=I[5,3,4,1,2]



DP Solution

e n’2 possible queries
o Ac= [Bre8ordpulg Bpm all!
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Sparse Tables

Ok, we don'’t actually need to precon
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Figure 2: Breaking up a range into powers of two

1 2 4
0 5 3
1 3 3
2 4 1
3 1 1




Block decomposition

e Break up the array into blocks
e “Square root decomposition” is a special case
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Figure 3: Array with block size b= 3



Hybrid Structures

e Use different algorithms for the “top” and “bottom” blocks
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Figure 4: Top level view of the overall RMQ structure



Building up to Fischer-Heun: Block Types

e Some blocks aren’t equal, but are “similar”
o Able to reuse block-level structures

B1=[1, 3,2, 4]
B2 =[10, 30, 20, 40]
B1~B2



Detecting Block Types: Cartesian Trees

e Same block type if and only if isomorphic Cartesian trees
o Implicitly maintain the “morphism” of each Cartesian tree

e (Cartesian Tree:

o Binary tree
o Inorder traversal yields the original array
o Min heap

(s} ) (99) 17)
(6 (o) 103 21)

GEEIERED w00 a2t 17

Figure H: Cartesian trees



Building Cartesian Trees

o Keep a stack of “active™ nodes.
e To insert a new node:

— While the stack is not empty and the top node has a value greater than the
new node:
* Pop nodes off the stack
— Make the parent of the new node the top of the stack, or null if the stack is
empty (the new node is now the root).
— Make the left child of the new node the last node that was popped off the
stack, null if nothing was popped off.

— Add the new node to the stack.

This algorithm runs in ©(n) and does at most 2n operations.



Runtime Analysis

e sparse table on the summary array with full precomputation on each block
O(n + %logn + (# of distinct blocks)b?)

O(n + % log n + 4°b%)

ks

O(n + n + n*(klog, n)?)

0<k<1
-> k =72 (why not?)



Fischer-Heun Structure, in Summary
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Figure 6: The final RMQ) structure



Sample Problem #1: SPOJ RMQSQ

e Direct application of RMQ



#2: USACO Max Flow, or any LCA problem

e Not a max flow problem

e Tree -> array (Eulerian tour)
o RMQ on this array



#3: SPOJ BEADS, SPOJ LPS, Leetcode LPS, Leetcode palindromic-substrings, etc.

e Define Longest Common Prefix (LCP)
o LCP(“abcd”, “abef’) = 2
e Suffix array and LCP Array

e LCP value between two nonadjacent suffixes is the range minimum
o RMQ!



#4: Sliding window/monotonic queue

e Just do RMQ(i, j) where i and j are the start and end positions of the window/queue



Side Note: picking k

Preprocessing time versus value of k Query time versus value of k
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k =1 wins! (0.8 if you want to be a theoretical purist)



S ources 5 Past Lectures

1. BITs
(a) “Binary Indexed Trees” (Patrick Zhang, 2019)
(b) “Binary Indexed Trees” (Daniel Wisdom, 2018)

All images (except for the ones on the "picKing K. slide).and.ideas come from:

2. Segment trees

1 (a) “Segment Trees” (Richard Zhan, 2019)

https://web.stanford.edu/class/cs166/lectures/00/Slides@0pdfiegment Trees” (George Tang, 2018)

(c) “Segment Trees” (Justin Zhang, 2017)

2. hitps://web.stanford, edu/class/cs166/Iectures/01/Siféie%5“1 e Megment Tiad (Kayin Coug, B17)

tororen; segment Trees” (Charles Zhao, 2016)

(f) (Broken) “/n Bucketing and Segment Tree” (Samuel Hsiang, 2015)
(g) (Unavailable) “Segment Tree (and its variants)”

SCT lectures mentioned can be found“ﬂmﬁ""tﬁésia‘st"wﬁ@e of the full RMQ lecture

3. Lowest Common Ancestor

(a) “Lowest Common Ancestor” (Richard Zhan, 2019)
. H (b) “Lowest Common Ancestor” (Daniel Wisdom, 2017)
(n Ot the a brl dged Ve rSIO n ) (c) “Lowest Common Ancestor” [most similar to this lecture]
(Matthew Savage, 2015)
(d) (Broken) “LCA and 2" Jump Pointers” (Larry Wang, 2016)

4. Longest Common Prefix

(a) “Suffix Arrays and Longest Common Prefix” (Daniel Wisdom, 2019)
(b) Constructing LCP array

5. “January Contest Review (v N decomposition™)
(Justin Zhang and Daniel Wisdom, 2018)

6. “Simple Range Queries” (Justin Zhang, 2017)

7. “Advanced Data Structures” [for RMQ)] (Alex Chen, 2011)


https://web.stanford.edu/class/cs166/lectures/00/Slides00.pdf
https://web.stanford.edu/class/cs166/lectures/01/Slides01.pdf

