
SCT Lecture:
Fischer-Heun RMQ

Stephen Huan
4/2/20

(coincidentally, the day I was supposed to go…)

Meant to be Watched with the “Abridged” Lecture!
● https://github.com/stephen-huan/sct-lectures/blob/master/abridged_rmq/lecture.pdf

● Alternatively… https://github.com/stephen-huan/sct-lectures/blob/master/rmq/lecture.pdf

https://github.com/stephen-huan/sct-lectures/blob/master/abridged_rmq/lecture.pdf
https://github.com/stephen-huan/sct-lectures/blob/master/rmq/lecture.pdf

Definition of Range Minimum Query (RMQ)
● Given an array A with length n and two indexes i, j | i ≤ j, find the smallest

element between i and j (inclusive on both ends).
● <f, g> runtime notation

Algorithms Not Discussed
● Fenwick Trees (BITS)
● Segment Trees

Extended Example
● A = [5, 3, 4, 1, 2]

DP Solution
● n^2 possible queries

○ Precompute them all!

1 2 3 4 5

0

1

2

3

4

S
ta

rti
ng

 i
nd

ex

Length of range
● A = [5, 3, 4, 1, 2]

5

3

3

3

3

4

1

1

1

1

1

1

1

2

1

Sparse Tables
● Ok, we don’t actually need to precompute them all

○ Can answer a general range based off two precomputed ranges

1 2 4

0

1

2

3

4

S
ta

rti
ng

 i
nd

ex

Length of range
● A = [5, 3, 4, 1, 2]

5

3

3

3

1

4 1

1 1

2

1

Block decomposition
● Break up the array into blocks
● “Square root decomposition” is a special case

Case #1Case #2Case #3

Hybrid Structures
● Use different algorithms for the “top” and “bottom” blocks

Building up to Fischer-Heun: Block Types
● Some blocks aren’t equal, but are “similar”

○ Able to reuse block-level structures

B1 = [1, 3, 2, 4]
B2 = [10, 30, 20, 40]
B1 ~ B2

Detecting Block Types: Cartesian Trees
● Same block type if and only if isomorphic Cartesian trees

○ Implicitly maintain the “morphism” of each Cartesian tree

● Cartesian Tree:
○ Binary tree
○ Inorder traversal yields the original array
○ Min heap

Building Cartesian Trees

Runtime Analysis
● sparse table on the summary array with full precomputation on each block

0 < k < 1
-> k = ½ (why not?)

Fischer-Heun Structure, in Summary
● Set block size to a multiple of the log of the size of the array (usually k = ½)
● Split the array into those blocks and calculate the minimum in each block
● Build a sparse table on the reduced array
● Build DP tables on each block, re-using a structure if it has the same

Cartesian tree number
● Answer queries using the usual hybrid approach

Sample Problem #1: SPOJ RMQSQ
● Direct application of RMQ

#2: USACO Max Flow, or any LCA problem
● Not a max flow problem
● Tree -> array (Eulerian tour)

○ RMQ on this array

#3: SPOJ BEADS, SPOJ LPS, Leetcode LPS, Leetcode palindromic-substrings, etc.

● Define Longest Common Prefix (LCP)
○ LCP(“abcd”, “abef”) = 2

● Suffix array and LCP Array
● LCP value between two nonadjacent suffixes is the range minimum

○ RMQ!

#4: Sliding window/monotonic queue
● Just do RMQ(i, j) where i and j are the start and end positions of the window/queue

Side Note: picking k

k = 1 wins! (0.8 if you want to be a theoretical purist)

Sources
All images (except for the ones on the “picking k” slide) and ideas come from:

1. https://web.stanford.edu/class/cs166/lectures/00/Slides00.pdf

2. https://web.stanford.edu/class/cs166/lectures/01/Slides01.pdf

SCT lectures mentioned can be found on the last page of the full RMQ lecture

(not the abridged version)

https://web.stanford.edu/class/cs166/lectures/00/Slides00.pdf
https://web.stanford.edu/class/cs166/lectures/01/Slides01.pdf

